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A B S T R A C T

Realistic and detailed liquid splashes require costly fine-scale discretization. We present
an efficient post-processing approach for particle-based methods to locally improve the
behavior of splashes on coarser liquids. Our method first computes a splash volume
over time from the intersections between an identified upsampling volume and collid-
ing volumes. We then upsample particles inside cells of the splash volume; these cells
are pre-computed using a likelihood score based on criteria favoring emerging parti-
cles. In addition to the advection scheme, enhanced realism is achieved by applying a
localized artificial pressure on upsampled particles in order to mimic surface tension in
critical regions of splashes. Finally, we propagate waves using a novel implicit model
that couples the impact of upsampled particles on the coarser liquid by updating the ve-
locity field at these locations. Our implicit wave model can produce detailed swirls by
solely applying velocity updates directly on the underlying particles from the coarse liq-
uid, and prevents from using a high density of surface points. As a result, our approach
can generate localized and parameterizable high-resolution splashes from solid-liquid
and liquid-liquid interactions, and thus can simulate a wide range of unique and cus-
tomizable splashes on top of an animated coarse liquid.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

In liquid simulation for visual effects, the discretization of2

the model is key to extract important features from complex3

examples, such as splashes and highly turbulent flows. This4

implies that in a particle-based liquid simulation, the number5

of particles must be strongly increased to bring out the fine de-6

tails desired for the final outcome. With a uniform density of7

particles, most of the particles do not contribute to the desired8

and expected behavior displayed in the final rendered image, as9

they are either submerged below the surface or remain almost10

motionless throughout the simulation.11

In this paper, we propose a flexible post-processing approach12

to improve splash modeling on top of a lower-resolution FLIP13

liquid surface. A subset of the input liquid volume is extracted14

from an input FLIP simulation. The extracted volume, so-called15

splash volume, is generated using the solid-liquid or liquid-16

liquid interactions occurring during the input animation. This17

volume is then augmented with a denser set of additional parti- 18

cles advected through the input velocity field. Tracer particles 19

are seeded among the upsampled particles to control the behav- 20

ior of the denser splash volume introduced by our approach. 21

These tracers exert artificial forces, allowing the simulation of 22

a surface-tension effect similar to applying an artificial pressure 23

force. The collisions between airborne upsampled particles and 24

the surface of the input coarse liquid are used as impact sources 25

that inject energy into a surface-based linear wave model. 26

We present a novel and comprehensive splash modeling ap- 27

proach for particle-based liquids. Our main contributions can 28

be summarized as the introduction of: 29

• A volume-based method to determine and upsample the 30

splash zone for liquid-liquid and solid-liquid interactions. 31

• Localized tracers to induce diffuse and surface-tension be- 32

haviors on upsampled particles. 33

• A sparse implicit linear wave formulation to handle inter- 34

http://www.sciencedirect.com
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(a) Coarse (400k particles) (b) Ours
(coarse + 450k upsampled particles)

(c) Reference (85M particles)

Fig. 1: Induced splash dynamics is generated (b) on top of a coarse FLIP liquid provided as input (a). Our approach is able to reproduce localized realistic splashes
comparable to a high-resolution (about 100× more particles) reference (c) with solely 450k upsampled particles seeded within a small portion of the domain.

actions between the coarse input and the upsampled parti-1

cles at impact locations.2

• A trade-off between realistic and artistic splash effects.3

• An interactive splash editing approach (once pre-4

computation steps are performed).5

2. Related Work6

Over the years, several solutions to simulate realistic and de-7

tailed fluids have been proposed for purely Lagrangian meth-8

ods, such as explicit and implicit SPH [1, 2, 3], and for hybrid9

methods, such as FLIP [4, 5, 6, 7, 8]. We refer readers to a10

comprehensive survey [9] and a book [10] describing in detail11

these methods. Procedural methods have also proven to be very12

efficient to enrich an input coarse fluid with fine details while13

offering a more practical artistic control. In the following, we14

focus primarily on topics more closely related to our work.15

2.1. Upsampling Methods and Adaptive Models16

Several approaches have explored different ways to increase17

the apparent spatial resolution of a coarse fluid simulation. In18

the last decade, the challenge of increasing the apparent resolu-19

tion of fluid simulations has been addressed through many vari-20

ants of sophisticated upsampling methods and spatial adaptive21

simulation models.22

2.1.1. Upsampling Methods23

These methods are able to effectively improve the high-24

frequency details while preserving the low-frequency behavior25

of the fluid, especially for smoke simulations [11, 12, 13, 14].26

Although we focus solely on increasing the resolution of local-27

ized splash behaviors in liquids, our work shares this same goal.28

Few attempts to apply this goal to liquids were made for both29

Eulerian [12] and Lagrangian [15, 16] methods. Instead of up-30

scaling the input velocity field, our method provides a realistic31

way to upsample localized portions of the unmodified coarse32

simulation data (particles and velocity field).33

Some researchers have considered adding sub-scale quanti-34

ties (e.g., curl noise) to existing coarse simulations [11, 12],35

while others have coupled these quantities to the Navier-Stokes36

equations [13]. In all these techniques, the quantities are extrap-37

olated into the obstacles (geometric models) to prevent artifacts38

around them, but at the cost of significantly less realistic behav- 39

iors compared to high-resolution simulations. Selle et al. [17] 40

proposed an approach to introduce particle-based vorticity to 41

grid-based methods. Their work was extended by Pfaff et 42

al. [14] to handle dynamic obstacles. In contrast to adding sub- 43

scale quantities to existing simulations, other researchers have 44

introduced multi-scale and adaptive formulations for particle- 45

based methods that extract different ranges of details within a 46

simulation domain [18, 19, 6, 20]. 47

Kim et al. [21] introduced a novel Eulerian approach to in- 48

crease the apparent spatial resolution of an existing liquid sim- 49

ulation. As they noted, increasing the free-surface details has 50

shown to be a valid solution to the up-scaling problem on liq- 51

uids, since the tangential velocity (and associated turbulence) 52

is loosely coupled to the fluid velocity field. Their work was 53

extended by Mercier et al. [22] to propose a coupled scheme 54

using a high-resolution wave simulation while preserving the 55

entire frequency spectrum of the input coarse simulation. For 56

more details, we refer readers to the comprehensive survey by 57

Thuerey et al. [23] on recent fluid up-scaling methods. These 58

methods are unable to generate small-scale details and are lim- 59

ited to increase the actual apparent resolution. We offer a com- 60

plementary and efficient way to recreate the missing small-scale 61

details at sudden disturbance locations occurring with coarse 62

liquids. 63

2.1.2. Spatial Adaptive Models 64

Even though our approach acts as a post-processing method, 65

it is closely related to the essence of several spatial adaptive 66

simulation models of the state of the art. Adjusting the spa- 67

tial resolution of simulation models has been firstly introduced 68

for fluid simulation by Desbrun and Cani [24]. Their approach 69

adaptively handles highly deformable models through a refin- 70

ing step applied to the particle resolutions. Similarly, Adams 71

et al. [25] proposed an adaptive sampling method focusing on 72

the computational efforts of complex geometric regions of a 73

fluid volume. They reduce the number of particles according 74

to their visual contributions. Adaptive sampling on fluid sim- 75

ulations has also been used to improve and preserve the vi- 76

sual appearance of thin sheets of fluids. After identifying the 77

thin portions of the fluid, the approach introduced by Ando et 78

al. [6] resamples these critical regions based on the anisotropy 79

of the particle neighborhoods. On a different note, Orthmann 80
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and Kolb [26] used a temporal blending technique to reduce the1

number of particles within low-resolution regions. Horvath and2

Solenthaler [27] improved the conservation of mass for resolu-3

tion refining methods of particle-based fluid simulation. Mean-4

while, Zhu et al. [28] proposed a new grid structure to extend5

the domain dimensions while preserving the fine details of a6

fluid simulation. More recently, Aanjaneya et al. [29] also in-7

troduced an efficient and sparse data structure to leverage the8

adaptivity of large-scale simulation domains. Recently, Sato et9

al. [30] extended the narrow band FLIP method to adaptively10

allow a transition between the particle band and the grid-based11

simulation anywhere in the domain (i.e., not exclusively close12

to the surface). Lastly, inspired by leveraging the data struc-13

ture adaptively toward multi-scale fluid simulations, Ibayashi et14

al. [31] introduced a novel warping grid in order to dynamically15

deform a regular grid evolving during the simulation. While us-16

ing spatial multi-scale resolution with particles improves visi-17

ble surface details of liquids, their adaptive nature makes it diffi-18

cult to exploit a trade-off between procedural and physics-based19

methods as our approach offers.20

Although the resolution dependency is well known in the21

field of fluid simulation for computer graphics, some challenges22

remain. Re-computing the forces and the advection step of a23

small portion of the liquid within a given simulation could be24

significantly expensive and particularly demanding to preserve25

its stability. Some authors have shown that this can be improved26

by using a machine learning process [32, 33, 34, 35]. Com-27

pared to these data-driven methods, our approach only requires28

a coarse liquid simulation to generate high-resolution results.29

Closer to our motivation, procedural methods have proven that30

upscaling a simulation can produce interesting small-scale fea-31

tures [21, 22]. In contrast to these procedural methods, our ap-32

proach is able to locally generate splash details that were poorly33

approximated due to a coarse discretization of the input simu-34

lation domain.35

2.2. Diffuse Material and Splash Modeling36

Several researchers have focused their work on handling in-37

teractions of air-liquid mixtures. The results of these interac-38

tions generate phenomena such as foam, spray, and white water39

at the interface of the liquid. Several papers have proposed hy-40

brid schemes to handle sub-scale details with particles advected41

through a grid-based simulation [36, 37, 38, 39]. A purely La-42

grangian approach was proposed by Ihmsen et al. [40]; they43

used post-processed layers of diffuse particles on top of an SPH44

simulation to represent foam and spray effects. In our method,45

we handle the diffuse portions of a liquid as ballistic particles46

and refine their behavior with localized artificial pressure cor-47

rections from seeded tracers among the upsampled particles.48

The diffuse air-liquid interactions are more likely to happen49

within splashes and highly turbulent regions of liquids. Kim et50

al. [41] focused their efforts on identifying under-resolved re-51

gions and adding massless markers in splashing portions of the52

liquid. Chentanez and Müller [42] also proposed a solution to53

improve the visual appearance of liquids for real-time applica-54

tion. Their hybrid model uses spray particles to approximate55

the liquid-air interactions between rigid and soft bodies. Re-56

cently, Um et al. [34] introduced a novel data-driven method to57

increase the realism of diffuse effects on splashing liquids. A 58

perceptual study was also published on these splashing behav- 59

iors [43]. However, in contrast with our work, we are focusing 60

solely on improving the splash modeling before its diffuse ef- 61

fects. Our approach focuses on key events prior to splashing 62

behaviors. 63

2.3. Wave Simulation 64

Many researchers have considered using a wave simula- 65

tion instead of a computational fluid to simulate liquid mo- 66

tion [44, 45, 46, 47]. Through the years, they have presented 67

several variations to reproduce waves with the capillary wave 68

equation [44], the iWave model [46], and the shallow-water 69

equation [48]. These methods were used to represent a very 70

large body of liquid (e.g., an ocean) as well as to enrich fine- 71

scale details in liquid simulations. 72

Particle-based waves were also used to increase high- 73

frequency details of liquid simulations [47, 22, 49]. In these 74

methods, the wave equation is used and seeded through ad- 75

vected particles. However, some of these approaches have ex- 76

perienced difficulties when handling complex scenarios such 77

as splashing and highly turbulent behaviors [45, 47]. Mercier 78

et al. [22] managed to robustly couple a dense point set wave 79

representation to a smooth and meshless surface. Later, Yang 80

et al. [49] proposed a novel implicit linear wave model to en- 81

rich SPH simulations. Recently, the dispersion kernels used 82

with wave simulations were improved for real-time applica- 83

tions [50, 51]. Similarly, we handle interactions between the 84

upsampled particles and the input coarse liquid with a point- 85

based wave representation and update the input particle veloci- 86

ties and positions. 87

3. Method Overview 88

We briefly describe in this section each step of our pipeline 89

(Fig. 2). As we aim to benefit from hybrid methods, we decided 90

to rely on the widely known FLIP-based fluid that we use as a 91

coarse input to our approach. 92

From a coarse simulation as input data (e.g., particles and a 93

velocity field for each frame of the input simulation), two pre- 94

computation steps are performed. First off, we compute a splash 95

volume (§ 4.1) by combining the intersection between user- 96

defined colliding volumes and the input volume (i.e., generated 97

from the coarse input liquid). As presented in Fig. 2, the splash 98

volume (e.g., green portion of the upsampling step) is slightly 99

extended (e.g., yellow portion of the upsampling step) to fully 100

cover disturbances surrounding solid-liquid and liquid-liquid 101

interactions. Thereafter, the resulting volume is discretized and 102

upsampled using a higher density of particles per cell (§ 4.2). 103

These upsampled particles are then injected into the existing 104

velocity field and advected alongside the input particles of the 105

coarse liquid (§ 5.3). Among upsampled particles, so-called 106

tracers are seeded (§ 5.1) and used as control particles to apply 107

localized artificial forces mimicking the effect of surface ten- 108

sion (§ 5.2). Lastly, we use a point-based linear wave model to 109

couple interactions between the upsampled particles and coarse 110

particles at impact locations. The waves are seeded to enrich 111
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Pre-computation Steps Runtime Steps High-Res. ResultLow-Res. Input

Splash Volume Upsampling

Capillary Waves

Next Frame

Artificial ForcesSeeding Tracers

Fig. 2: Overview of our pipeline. The particles and the velocity field of an existing animated coarse liquid are used as initial inputs. The first two steps are part
of a pre-computation process to determine and upsample a splash volume. The simulation steps iterate on the tasks to seed tracers among the upsampled particles,
apply a localized artificial pressure, and generate linear waves at impact particle locations on the coarse liquid surface. The highly detailed splashes generated by
our approach are computed at a much lower cost than would have been necessary to simulate similar splashes at high resolution with traditional approaches.

these impacts over the coarse input liquid (§ 6). As shown in1

Fig. 2, two pre-computation steps are performed only once for2

the whole input simulation data and can be reused with different3

parameter sets to generate alternative high-resolution results.4

4. Splash Volume5

A subset of the input simulation domain is determined to lo-6

cally increase details around potentially splashing portions of7

the liquid. This volume is computed from the coarse input sim-8

ulation data. At each frame of the input simulation, we iden-9

tify a colliding volume that will contribute to the splash volume10

(§ 4.1). Thereafter, the splash volume is refined to upsample11

important portions of the liquid with more particles (§ 4.2).12

4.1. Splash Volume Generation13

From the input liquid, our method splits the scene into
upsampling and colliding volumes. These distinct volumes are
determined manually at the first frame of the input animation.
The colliding volumes can be either a volume of liquid or a
static or dynamic obstacle. We identify the upsampling volume
as Ωup and the colliding volumes as Ωc.

The splash volume ΩS is obtained from the unions of the
upsampling volume Ωup and the colliding volumes Ωc over
time. The splash volume ΩS is therefore pre-computed from
all N f frames of the input simulation and is expressed as

ΩS =

N f⋃
i=1

(
Ωc

i ∩Ω
up
1

)
, (1)

which corresponds to the intersection between the upsampling14

volume Ωup and the union of the colliding volumes. The updat-15

ing process of the splash volume ΩS is illustrated in Fig. 3 as16

well as in the accompanying video. As shown in the top row,17

we only keep the intersection with the volume Ωup at the first18

frame i = 1.19

...

...

Fig. 3: Generation of the splash volume from the upsampling volume (blue)
and the collision volumes (green).

Our method for generating a splash volume handles scenar- 20

ios in which solid-liquid or liquid-liquid collisions occur. For 21

solid-liquid collisions, we convert the input mesh of the static 22

or dynamic obstacle into a volume Ωc. As shown in Fig. 3, only 23

the intersection with Ωup is kept since it will ultimately repre- 24

sent the splash volume ΩS to be upsampled. For liquid-liquid 25

interactions, we split the volume of the input liquid into distinct 26

volumes: one volume Ωup to be upsampled (e.g., liquid con- 27

tainer), and volumes Ωc that will collide with the upsampled 28

volume (e.g., a falling drop of liquid). For this type of inter- 29

action, we keep track of the particles initially composing Ωc to 30

generate the deforming volume Ωc
i over time. 31

4.2. Particle Upsampling 32

The purpose of the oversampling step is to identify regions
within the splash volume ΩS in which upsampled particles
should be added (see § 7 for implementation details). As op-
posed to upsampling entirely the volume ΩS , our upsampling
method focuses on regions (i.e., subset of cells) in which sig-
nificant changes are likely to occur (see § 8.6 for a comparative
analysis). Our emerge-tendency upsampling method concen-
trates on the regions of the splash volume in which particles
are most likely to emerge. We define the emerge-tendency of
cells as their probability to contain particles that reach the sur-
face at some point during the entire animation. A likelihood
score is computed for each cell identifying which ones to up-
sample. The likelihood score is obtained by computing three
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reward terms as follows:

Θ(x) =

N f∑
i=1

rti(x) + α

N f∑
i=1

rui(x) + (1 − α)
N f∑
i=3

rsi(x), (2)

where Θ is a set of cells containing the score associated with1

each grid cell x within ΩS and in which the reward terms are2

respectively based on particle trails rt, velocity norm ‖~ui(x)‖23

noted as ru, and velocity orientation stability rs. We also in-4

troduce a weighting factor α to the reward terms ru and rs5

controlling the relative influence of each other on the likeli-6

hood score. We used α = 0.5 in all our examples except with7

the River (see § 8.2). Given as input the entire animation of

Algorithm 1: Identify cells to upsample with ΩS .

for x ∈ ΩS do
rt(x) = ru(x) = rs(x) = 0
for i ∈

[
1,N f

]
do

if crossSurface(p(x), i) then
rt(x) += rti(x)

ru(x) += ‖~ui(x)‖2

for i ∈
[
3,N f

]
do

rsi(x) = 1 for j ∈ [i − 2, i] do
rsi(x) ∗= max (~u j

i (x) · ~ni(x), 0) ≥ cos ψ
2

rs(x) += rsi(x)
Θ(x) = rt(x) + αru(x) + (1 − α)rs(x)

meanScore = computeMeanScore(Θ)
s = ∅

for x ∈ ΩS do
if Θ(x) ≥ meanScore then

s← s ∪ x
UpsampleCells(s, sup)

8

the coarse liquid, computing the particle trail reward term rt is9

fairly trivial. We set rti(x) to be equal to the number of parti-10

cles p(x) originating from cell x that cross a surface cell within11

the splash volume at frame i. The surface cells are defined12

as the discretization of the surface level set. Since our objec-13

tive is to predict which particles among the upsampled particles14

will reach the surface, only computing the trails of the coarse15

particles will be insufficient. In that sense, the input velocity16

field ~u complements the particle trails. We set rui(x) to the L2
17

norm of the grid cell velocity. Consequently, the velocity L2
18

norm term penalizes cells containing a lower velocity over time.19

ψ

ψ

Fig. 4: 2D example
of rsi evaluation.

Lastly, we complement the likelihood20

score Θ of each cell x with the reward rs,21

which considers the grid cell velocity ori-22

entation over time. The rs term rewards23

grid cells with velocity orientations point-24

ing toward the liquid interface for a se-25

quence of consecutive frames. The ve-26

locity orientation stability rsi(x) is equal27

to 1 if consecutive velocities lie within a28

cone defined by an angle ψ aligned with29

the normal of the liquid interface (other-30

wise rsi(x) = 0). We figured out (after a few experiments) that31

a window of three consecutive frames (i.e., i − 2, i − 1, and i)32

was a good compromise to estimate our stability term over time.33

Consider the 2D example shown in the inset Fig. 4: the current 34

and two previous velocities are oriented inside the cone defined 35

by ψ in green (top image: rsi(x) = 1). The bottom image shows 36

a case where one of the velocities ~u t (red) is outside the cone 37

(i.e., rsi(x) = 0). 38

The resulting subset of cells s to upsample contains the cells 39

with a likelihood score (as shown in Alg. 1) greater or equal to 40

the average likelihood score among the cells contained inside 41

the splash volume ΩS . Finally, the cells identified are upsam- 42

pled using the commonly known jittered grid technique. As 43

proposed by Zhu and Bridson [4], we create randomly jittered 44

particles in every cell using d3 subgrid positions where d is the 45

subgrid dimensions. The number of particles per cell used in 46

our examples corresponds to the number of particles per cell 47

given from the coarse input liquid multiplied by a factor sup. 48

Therefore, the number of particles upsampled is equal to supd3. 49

5. Tracers and Upsampled Particles 50

Tracers are seeded in the splash volume, but only within the 51

narrow band (§ 5.1) defined from the interface of the liquid. 52

These tracers are used to influence the upsampled portions of 53

the liquid; they mimic the effect of surface-tension forces ob- 54

served in splashes. We call them tracers because they trace 55

trajectories for upsampled particles. The movement of a tracer 56

is initialized with the velocity transferred from the closest up- 57

sampled particle, and afterward, it is only influenced by grav- 58

ity. The upsampled particles within a user-defined maximum 59

distance of tracers are affected by an artificial pressure term as 60

used with position-based fluids (PBF) [52]. The details of up- 61

sampled particles velocity update are presented in § 5.3. 62

5.1. Seeding Tracers 63

Since our aim is to enhance surface details around localized 64

portions of the input liquid, we constrain the seeding of trac- 65

ers within a narrow band according to a set of criteria. The 66

seeding operation is performed in a way to achieve a uniform 67

distribution, to distribute the tracers close to the interface, and 68

to seed them according to the velocity norm throughout the an- 69

imation. Tracers are seeded using the Fast Poisson Disk sam- 70

pling method [53] within a narrow band of the splashing liquid. 71

The narrow band is defined as a set of cells discretized from 72

the liquid interface. We use the 3D implementation of the sam- 73

pling method considering the narrow band thickness (see § 7 for 74

implementation details). The band thickness 4τtp is defined as 75

twice the influence radius of the tracers (refer to Table 1). This 76

band thickness was chosen to ensure a minimum number of up- 77

sampled particles affected by our tracers and to avoid neighbor- 78

hood deficiency. 79

The last criterion on the velocity norm is used to discard in- 80

significant motionless portions of liquid. The velocity norm 81

criterion focuses on seeding tracers in regions where the input 82

liquid is likely to be disturbed and to present notable small- 83

scale detail differences. Tracers are seeded at locations where 84

the L2 norm of the velocity is increasing. In other words, trac- 85

ers are seeded in cells with increasing velocities over time. The 86
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moment of creation of tracers is determined by the velocity cri-1

terion as well. To trigger the seeding process, we use a five-2

frame temporal sliding window 4wtp and evaluate the velocity3

L2 norm change for every grid cell. The L2 norm evaluation of4

the velocities is performed as shown in Alg. 2.

Algorithm 2: Evaluate if the velocity L2 norm of a cell at
time t satisfies the tracer seeding conditions within the tem-
poral frame interval [t, t + 4wtp[.

for i ∈ [t, t + 4wtp[ do
if ‖~ui+1‖

2 ≤ ‖~ui‖
2 or ‖~ui‖

2 < ‖~ui‖
2

then
return false

return true

5

Although evaluating velocities within a five-frame window6

leads to very good results on our examples, this frame interval7

could be adjusted by the user. Cells where tracers will be seeded8

must also have a high velocity; the velocity L2 norm must be9

higher or equal to the current average velocity ‖~ui‖ in order to10

exclude small velocities increasing over time. We update an11

average velocity from all the cells containing particles at each12

frame and use it as a reference. Seeding tracers is computed at13

a negligible cost since it is performed exclusively on cells at the14

interface and inside the splash volume.15

5.2. Localized Artificial Forces16

We use the tracers to apply a correction term on the position
of the upsampled particles to avoid artifacts such as clustering
and clumping. These artifacts issued from negative pressures
occur at the initialization step with the input velocity field. We
use an approach similar to that of Monaghan [54] to correct
tensile instability with an artificial pressure term, as follows:

sp = −k
(

W(~pi − ~p j, h)
W(~pi − ~q, h)

)n

, (3)

where ~q is a point inside the smoothing domain defined between
~pi and ~p j, n the pressure power constant, and k a stiffness con-
stant (we always use k = 0.1 and n = 4). The particle dis-
placement 4~pi based on the artificial pressure term sp is then
expressed as follows in the particle position update step, as used
by Macklin and Müller [52]:

4~pi =
1
ρ0

∑
j

sp∇W(~pi − ~p j, h). (4)

The support radius htp is defined between 0 and the input sup-
port radius h to adjust the influence of tracers over the upsam-
pled particles. The value of htp depends on the desired vi-
sual outcome (as shown in Fig. 16). Furthermore, the parti-
cle density is usually unknown when using the FLIP simulation
method. We thus derived a normalized expression implicitly
taking density into account [55]:

4~pi =
1∑

j W(~pi − ~p j, h)

∑
j

sp∇W∗
tracer(~ri j, htp). (5)

Similarly to Müller et al. [56], we use the Poly6 kernel for den-
sity estimation and the Spiky kernel for gradient estimation. In
Eq. 5, we employ a slightly different kernel function to com-
pute the position update. We propose a tracer-relative kernel
function as follows:

W∗
tracer(~ri j,~rit, htp) =


(
htp −min(|~ri j|, |~rit |)

)3
0 ≤ |~rit | ≤ htp

0 otherwise,
(6)

where |~ri j| is the length of the vector between upsampled parti- 17

cles i and j, and |~rit | is the length of the vector between upsam- 18

pled particle i and the closest tracer. By promoting the clos- 19

est tracer, we ensure to improve a localized particle attraction 20

based on the most significant contributor. In the proposed ap- 21

proach, tracers are used as control particles over the upsampled 22

particles. Their kernel-based contribution influences the neigh- 23

boring upsampled particle positions by updating their velocities 24

and by applying an artificial force to mimic the pressure nature 25

of liquids on diffuse particles. 26

By comparison to position-based fluids (PBF) (Eq. 3), we use 27

a point ~q defined as the position of the closest tracer. In contrast 28

with the one used by Macklin and Müller [52], our artificial 29

pressure term is primarily applied to particles within a radius 30

distance from the seeded tracers. The distance between an up- 31

sampled particle and the closest tracer must be smaller or equal 32

than the support radius h used for the coarse input. This term 33

improves the generation of fine surface-tension details among 34

the upsampled particles. 35

Our tracer-relative kernel function can also be easily inte- 36

grated into the PBF model. As shown in Fig. 6, seeding tracers 37

among the particles and applying our constrained artificial pres- 38

sure can locally improve affected regions in a PBF liquid. 39

5.3. Upsampled Particles: Advection and Lifespan 40

During their lifespan, upsampled particles evolve between 41

different states, based on the types of details they are likely to 42

add to the simulation. In this section, we will explain the three 43

states (bulk, ballistic, and impact) and how particles evolve be- 44

tween states (Fig. 5). 45

The bulk state is flagged when an upsampled particle is inside
the splash volume. By default, all upsampled particles are con-
sidered as bulk at the initialization step (i.e., when seeded at pre-
computation steps). The bulk particles pbulk are advected using
a Runge-Kutta scheme through the input velocity field [4]. The
velocity update used for bulk particles is performed solely using
the input coarse velocity field as follows:

~u i
pbulk

= ~u i−1
pbulk

+ lerp(4~u i
input, ~x

i
pbulk

). (7)

As with FLIP, the weighted average of the velocities of the up- 46

sampled particles is computed and added to the nearby stag- 47

gered MAC grid ~u i
input nodes. At each step, the interpolated 48

difference from the input grid velocity 4~u i
input is computed and 49

assigned to each particle at their respective position ~x i
pbulk

. This 50

velocity update step is very effective since we are computing 51

these velocity changes only for cells inside a subset (i.e., splash 52

volume) of the input simulation domain. 53
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Upsampled
Particle

Was
ballistic

Inside
0-Φ Bulk

Impact

Ballistic

Yes

No

Yes

No

Fig. 5: State machine (trigger events in green) for determining the particle state
(yellow).

The ballistic state is triggered when an upsampled particle
leaves the bulk volume determined by the liquid interface of the
input simulation (see Fig. 5). The upsampled particles flagged
as ballistic are initialized with the current particle velocity ~u i

pbulk

previously computed before leaving the coarse liquid (i.e., w.r.t.
the liquid surface). They are later influenced by gravity and
possibly by tracers (as previously described in § 5.2) as follows:

~u i
pbal

= ~u i−1
pbal

+ ~g4t (8)

and where the updated position of a bulk particle ~x i
pbal

at frame i1

is obtained by integrating the resulting ~u i
pbal

with the correction2

term defined in Eq. 5.3

Lastly, the impact state is triggered when a ballistic particle4

intersects back with the coarse liquid surface. The name impact5

is taken from the fact that these particles will alter the veloc-6

ity of the particles within the bulk volume. This state is only7

flagged for a particle during one frame. It allows us to detect8

the positions for seeding point-based waves within the bulk por-9

tion of the input liquid (§ 6). As soon as we store the impact10

position, the particle is flagged back as bulk and its velocity is11

updated according to the underlying velocity field. We use tri-12

linear interpolation for a smooth transition of the velocity from13

its ballistic nature to the current grid cell.14

For efficiency reasons, we discard particles that are unlikely15

to contribute to splashes. We define an upsampled particle as16

discarded if it no longer contributes to the surface details of the17

liquid. We use two criteria to determine if an upsampled par-18

ticle contributes to surface details: its distance to the interface19

inside the liquid and its current velocity. With these two crite-20

ria, we manage to preserve small- and large-scale details around21

induced splashes. The distance criterion uses the same distance22

as defined when seeding tracer particles (§ 5.1). However, this23

threshold does not apply if the upsampled particle is still in-24

side the splash volume. As a second criterion, we also discard25

upsampled particles if their velocity is lower than the average26

velocity. We use the same average velocity per cell obtained27

when seeding tracers (see § 5.1).28

Fig. 6: Our tracers (red) constrain an artificial pressure term integrated with
PBF. The localized correction produces a smooth and controllable surface-
tension effect among the upsampled particles (left) compared to the originally
diffuse behavior (right).

Impact Detected Seed and Evolve Wave Update Coarse Liquid

Fig. 7: An impact is defined by the intersection between an impact particle and
the coarse liquid (left). Surface points distributed and projected on the surface
are used to support and evolve the linear waves (middle). The tangential veloc-
ities of the point-based waves are used to update the underlying grid velocity,
and then the positions of the input particles from the coarse liquid (right).

6. Implicit Linear Waves 29

Since ballistic particles are likely to touch the interface of the 30

coarse liquid, additional details must be generated on the liquid 31

interface in order to preserve the realism of the approach. Fol- 32

lowing the detection of impact particles (i.e., ballistic particles 33

intersecting the coarse liquid surface), we handle their interac- 34

tions with the coarse liquid provided as input (Fig. 7). In our 35

approach, these interactions are reflected as velocity updates on 36

the grid cells, and generated as seeded waves evolving from the 37

impact locations. These waves are modeled by surface points 38

uniformly distributed to cover the implicit surface. A wave dis- 39

placement is computed according to the impact properties and 40

the estimated normals obtained from the implicit surface. The 41

evolving waves locally affect the neighboring cell velocities by 42

their tangential velocities. The neighboring affected area is de- 43

termined by the impact radius. The positions of the coarse input 44

particles are then updated to reflect these changes (see Fig. 8). 45
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Before droplets impact
Coarse input With implicit waves

After droplets impact
Implicit points

(a) (b) (d)(c)

(frame 30)
(frame 60)

Fig. 8: The small droplets of a splash (a) are often absorbed on impact (b), resulting in loss of multiple fine surface details. Our implicit linear wave model provides
convincing interactions through small swirls generated by these droplets (c). The waves are propagated through the implicit points projected on the surface (d).

6.1. Surface Points1

The surface points are distributed uniformly over the entire2

implicit surface generated from the coarse liquid. These surface3

points are generated once at the very first frame of the input4

animated fluid. We use a Poisson distribution to initialize the5

surface points along the surface. The positions of the surface6

particles from the coarse input liquid are used as the initial lo-7

cations for Poisson disk sampling [53]. The surface points that8

we call implicit points from this stage, are then projected on the9

surface of the coarse liquid. The number of implicit points cre-10

ated is bounded by the particle density per cell of the input liq-11

uid. Since we aim to solely introduce small impact interactions,12

our wave model does not require a computationally expensive13

maintenance process (as opposed to Mercier et al. [22]) on im-14

plicit points after the projection step. In addition, it is noted that15

surface points are not used when generating the surface mesh16

(as shown in Fig. 7(c)) considering that their sole purpose is to17

perturb surrounding cells of the input velocity grid.18

6.2. Wave Seeding and Propagation19

The seeding locations are determined by the position of the
upsampled particles flagged as impact particles. We use the
current velocity magnitudes of the upsampled particles at im-
pact locations to parameterize the wave properties when seeded.
Since our goal is to infer interactions from these impacts, our
wave model is defined as an efficient gridless version of the 2D
heightfield liquid simulation [57]. With this model, height is the
factor that determines the wave velocity. On impact, we update
the heights hpimpl of the implicit points (pimpl) i within radius as
follows:

hi
pimpl

= hi
pimpl

+
1
N

N−1∑
j=0

[
cos

(
‖~c − ~p j‖

rim
π

)
αs‖~uim‖

]
, (9)

where ~c is the center of the impact position, ~p j the position of
the jth implicit neighbor of N points, and ~uim the velocity of the
impact weighted by a user-defined normalized scaling factor αs.
The radius of the impact rim is also defined as a function of the
impact velocity norm ‖~uim‖ as follows

rim = αr‖~uim‖, (10)

and weighted by a user-defined normalized constant αr. In20

our examples, we used an αr equal to 10% of the simulation21

scale from the coarse input liquid. The first term in brackets of22

Eq. 9 is the height displacement applied by an implicit neigh- 23

bor point j, and the second term is basically the strength of the 24

wave displacement. 25

We propagate and evolve the waves using the neighbor con-
tributions at each frame. For each implicit point i, an average
height h̄pimpl from the neighborhood is computed and used to
update a local 1D wave velocity (initialized as zero before im-
pact):

ui
pimpl

= ui
pimpl

+
1
N

N−1∑
j=0

[
(1 − βdamp)u j

pimpl + 2(h̄pimpl − h j
pimpl )4t

]
.

(11)
The updated height is obtained by adding this 1D velocity to its 26

current value ui
pimpl

(initialized by the grid velocity at that po- 27

sition). The term (1 − βdamp) enforces wave damping. Finally, 28

we update the positions on every implicit point affected, and ac- 29

cording to the orientation of the implicit point normal . The nor- 30

mal at these points is computed using an averaged least-squares 31

planar fit of the local gradient of Φ based on the implicit point 32

neighbors. The planar fit allows us to compute a plane defined 33

by a tangent and a bi-tangent, both orthonormal to its normal. 34

6.3. Influence over Coarse Particles 35

We achieve the update on the input surface particle positions
by converting the affected particles to bulk particles. The sub-
set of affected particles is determined by the impact radius. As
a wave is affected by damping, the corresponding particles re-
turn progressively to their current input state. The implicit point
velocities upimpl are used to alter the coarse grid velocity, and to
update the affected coarse particles. We use the tangential ve-
locity at each implicit point defining the waves. The tangential
velocity is computed by orienting the implicit point velocity to-
wards its tangent vector. For our wave model, we chose the
tangent vector ~t i

pimpl
according to the impact velocity orientation

and with respect to ~n i
pimpl

. We compute the updated grid cell
velocity by interpolating it between its current value and the
tangential velocity at that position (i.e., ~xpi

impl
). The grid cell

velocity is returning to its unmodified value as the tangential
velocity gets attenuated as:

~u ∗input(x) = (1 − γatt)~uinput(x) + γatt(u i
pimpl

~t i
pimpl

). (12)

The normalized interpolation term γatt is calculated based on
the ratio between the current implicit point velocity at frame t
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and the one when the wave has been seeded (~u0
pimpl

):

γatt =
‖~upimpl‖

‖~u0
pimpl‖

. (13)

The velocity updates are performed exclusively on the surface1

cells (i.e., according to the discretized level set).2

7. Implementation3

Most of the steps of our approach are computed on the GPU4

with CUDA. Our examples were generated on an Intel i7 quad5

core running at 3.4 GHz with 16 GB of RAM, and using an6

NVIDIA GTX 1080 with 8 GB GDDR5X. Our input coarse7

simulations come from the implementation of FLIP available8

in Houdini 16.5 [58]. Although our input is obtained from a9

traditional FLIP method, the use of any of its variants, such10

as narrow-band FLIP [7], would have been equally valid. The11

parameter values used with the presented examples are exposed12

in Table 1. In the following, we also include implementation13

details for core steps of our method to facilitate reproducibility14

of the presented results.15

Parameter Notation Value

Input support radius h ∗

Scaling reward terms α [0.5, 0.7]
Subgrid dimensions d

[
2, supd]

]
Tracer influence radius htp [0, h]
Tracer band thickness 4τtp 2h
Tracer temporal window 4wtp 5
Tracer pressure power n 4
Tracer stiffness constant k 0.1
Upsample factor sup [2, 6]
Scaling impact velocity αs 0.5
Scaling impact radius αr 0.1sup

Scaling wave damping βdamp [0.7, 1.0[

Table 1: Parameters used to generate our results. As exposed, our approach has
only few user-defined parameters. Most of the parameters presented are fixed
(i.e., invariant from the types of scenario) or given from the input liquid. ∗ The
input support radius h and scaling upsample factor sup are the only parameters
that are specific to a scenario; they depend on the scale and the level of detail
required by it.

Splash Volume. When generating the splash volume, Ωup and16

Ωc are computed using an SDF of the input particles. Dur-17

ing SDF computation, we also consider as boundaries the input18

obstacles such as static and dynamic meshes. The discretized19

splash volume resolution corresponds to the resolution of the20

input velocity grid. It is formed as a subset of cells of the input21

velocity grid. Of course, we solely consider cells containing22

particles as part of this subset. In the case of liquid-liquid inter-23

actions, we keep track of the distinct volumes of liquid by as-24

signing the particle unique IDs to a volume ID. Naturally, and25

for that reason, we avoid using a resampling step when gen-26

erating the input liquid simulation. For both solid-liquid and27

liquid-liquid interactions, we expand the colliding volume Ωc
28

in order to capture properly the disturbance on the upsampling29

(a) (b) (c)

Fig. 9: Spherical drop: (a) Low-resolution (95k particles, 403 grid resolution,
0.9 s/frame) simulation of a spherical drop of liquid falling in a pool of liquid.
(b) High-resolution (1.2M particles, 2003 grid resolution, 7 s/frame) simulation.
(c) Our method (115k added particles, 0.3 s/frame).

volume Ωup. Expanding Ωc is particularly helpful with solid- 30

liquid interactions since obstacles tend to push particles outside 31

their boundaries. Moreover, we can automatically trigger to 32

stop updating the splash volume ΩS if it remains constant af- 33

ter several consecutive frames (e.g., as with the Hulk’s wrath 34

example shown in Fig. 13). We observed that while we should 35

limit the number of cells in the splash volume, the impact on the 36

total computations is less critical than other parts of our method. 37

Lastly, we determine the first frame i from which we track the 38

splash volume as the first collision detected between the collid- 39

ing volume Ωc and the upsampling volume Ωup. 40

Volume Upsampling. In our implementation, we upsample ΩS
41

by using its discretized representation (i.e., set of cells). The in- 42

put particles contained in the splash volume are automatically 43

converted to upsampled particles. Therefore, we are able to pre- 44

vent undesired artifacts that may occur by separately processing 45

upsampled particles from the low-resolution input liquid. Us- 46

ing eight particles per grid cell is usually enough to extract fine 47

details with the FLIP simulation model. As discussed by Zhu 48

and Bridson [4], using more particles will rarely generate bet- 49

ter results. However, since our approach aims to upsample an 50

input coarse liquid for visual improvements, using locally more 51

particles can greatly increase the small-scale details of the re- 52

sults. In fact, for the purpose of generating dynamic details for 53

splashing liquids, we show that a higher density of particles will 54

locally produce high-detailed and realistic results. 55

Seeding Tracers. As described by Bridson [53], we chose k to 56

define the density of tracers for each sample xi (k = 5 was used 57

in all our examples). The samples xi are initially defined at each 58

center of the cells contained in the discretized narrow band of 59

the liquid surface. Finally, the same distance as used with 4τtp 60

is employed for the Poisson disk radius r. For effeciency, a 61

tracer is discarded as soon as it touches the interface of the bulk 62

liquid. 63

8. Results and Discussion 64

Our post-processing approach can locally generate realistic 65

splashes in a wide range of scenarios. These splashes are obvi- 66

ously different than the ones that would result from a simulation 67

with denser particles everywhere, but they are representative of 68

such simulations since they affect both the splash details and 69
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Fig. 10: Induced splash dynamics is generated on top of a coarse FLIP liquid provided as input. Our approach is able to reproduce localized realistic splashes (left
enlarged) that were initially absent in the input coarse liquid. We also handle interactions between our geometric model and the coarse input, such as reflected swirls
and waves (right enlarged), by adding an implicit linear wave model.

the coarse liquid surface. We can handle induced dynamics for1

solid-liquid as well as liquid-liquid interactions. In the follow-2

ing, we discuss the results obtained for the different examples3

presented in this paper and its supplemental material.4

8.1. Comparison with High-Resolution Results5

The idea behind our approach is to provide a sufficient den-6

sity of particles locally to reduce the noticeable numerical dis-7

sipation occurring at sudden disturbance locations in the liquid.8

Our method focuses on generating splashes locally where they9

should appear. As shown in Fig. 9(a), the low-resolution liq-10

uid is unable to represent the small crown splash because of its11

very coarse discretization (95k particles). We had to increase12

the number of particles to slightly above a million (Fig. 9(b))13

to successfully generate a fine-detailed splash with a traditional14

FLIP method.15

High-resolution (900k particles)

Ours (coarse + 115k upsampled particles)

Fig. 11: A ball falls in a small container of liquid. As clearly noticeable in the
low-resolution example (left), the splash is totally nonexistent. Despite using
this same coarse liquid as an input to our method, we managed to generate a
detailed crown splash (top right), that is similar to the high-resolution refer-
ence (bottom right).

Despite the fact that the standard FLIP method provided16

enough fine details to extract a decent splash at high res-17

olution, the computational cost of simulating this example18

was high (∼7 s/frame) compared to the low-resolution version19

(∼0.9 s/frame). Although this has been solved for hybrid meth-20

ods, it is still worth mentioning that most of the high-resolution21

particles barely contributed to the desired result, even within 22

a narrow band (e.g., [7, 8]). Our experiments on this exam- 23

ple showed that only around 100k of these particles from the 24

high-resolution simulation actually contributed to the central 25

splash. With our post-processing approach, we need to add only 26

115k particles (based on criteria provided in § 4.2) on top of the 27

coarse input particles, to generate a realistic splash reproducing 28

a behavior matching the one found in the high-resolution simu- 29

lation. Solely a small portion of the simulation domain needed 30

to be processed by our method at a very inexpensive cost of 31

about a second per frame from the coarse input liquid. Clearly, 32

an arbitrary larger simulation domain would have resulted in 33

larger gains. 34

8.2. Solid-Liquid Interactions 35

Our method has a fully automatic way to deal with solid- 36

liquid interactions. The animated mesh of the solid interacting 37

with the liquid is used to generate the associated splash vol- 38

ume. This step is computationally inexpensive and the frames 39

only need to be processed once to compute and upsample the 40

resulting splash volume. Another advantage of our approach 41

is that once the pre-computation steps (splash volume and up- 42

sampling) are performed for a specific scenario, it can be used 43

efficiently to experiment with different sets of values for param- 44

eters (as shown in Fig. 16). 45

Because our splash volume is computed by the interactions 46

between a closed mesh and the input liquid, we must extend 47

slightly the interface of the updated SDF by an epsilon value to 48

gather the part of the coarse liquid in the vicinity of the moving 49

object. For example, we used an epsilon equal to 0.2 (twice the 50

particle separation) for the Fractal fruits (Fig. 1) and the Ball 51

drop scenarios (Fig. 11) with a domain size of 8×5×8. For the 52

scenario of Hulk’s wrath (Fig. 13), epsilon is 0.5 for dimensions 53

of 10 × 5 × 3. We extend the SDF to ensure that the resulting 54

splash volume will contain most of the particles affected by this 55

induced interaction. The Speedboat ride scenario (Fig. 10) is 56

a good example to push the limits of our method. It would be 57

reasonable to think that our method could be even more costly 58

than a traditional FLIP method if the resulting splash volume 59

were generated over the whole simulation domain. As shown in 60

the Speedboat ride scenario, the path followed by the animated 61
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(a) Coarse input (b) Chentanez and Müller [42] (c) Ihmsen et al. [40] (d) Ours

Fig. 12: Comparison between our approach and state-of-the-art methods using spray particles. The spray particles ((b) and (c)) and our upsampled particles (d) are
identified in red.

Example
Number of particles Pre-computation∗ Simulation time Simulation

Low- High- Upsampled Splash Upsampling (s/frame) Advection Seeding Artificial Implicit
Res. Res. Volume LR HR Ours Tracers Pressure Waves

Spherical drop 95k 1.2M 115k 2.3 1.4 0.9 7.0 0.3 14% 18% 23% 46%
Ball drop 100k 0.9M 115k 2.5 1.5 1.0 6.5 0.4 14% 16% 23% 47%

Hulk’s wrath 225k 1.1M 150k 3.6 1.8 3.1 9.3 0.5 16% 23% 21% 40%
Speedboat ride 280k 2.3M 300k 34.2 2.5 3.5 10.5 0.7 17% 13% 19% 52%
Fractal fruits 400k 85.4M 450k 6.2 3.5 5.2 102.7 0.9 16% 14% 18% 52%

River 250k 10.6M 350k 3.3 5.2 2.6 11.2 0.8 15% 12% 17% 55%

Table 2: Statistics and computation times breakdown for the steps of our algorithm. Our method adds upsampled particles to the low-resolution particles. ∗ The
pre-computation steps (in seconds) are excluded from the simulation time (in seconds per frame) since they are computed once before simulating.

boat passes through most of the domain. Therefore, the evalu-1

ated splash volume at the end of the animation is indeed as large2

as the surface covering the whole liquid. However, even with3

a difficult scenario like this one, we managed to keep increas-4

ing the splash details while reducing significantly (compared to5

the equivalent high resolution) the associated computation time6

per frame. The criteria for upsampling are key to avoid over-7

sampling at non-visually-interesting areas. As evidenced with8

the low-resolution example of this scenario, the boat does not9

generate much detail except when tight turns occur. From the10

input coarse resolution, our score based on the tendency of a11

particle to reach the surface helps to wisely upsample the un-12

derlying cells of the discretized splash volume. As shown in13

Table 2, the Speedboat ride example was more costly in pre-14

computation steps because we had to compute the volume based15

on the whole animation (500 frames). In contrast, the Hulk’s16

wrath splash volume example was very fast to compute, con-17

sidering that the hand was in contact with the liquid for just a18

few frames of the animation. In such cases, we were able to19

stop early the volume pre-computation step. The Fractal fruits20

(Fig. 1) example successfully demonstrates the capability and21

scalability of our post-processing approach. Once the required22

pre-computation steps are performed (total of 9.7 s to compute23

Fig. 9(a) Fig. 9(b) [42] [40] Ours
# spray /

- - 49k 262k 115ksplash
particles
Time per

900 7000 2 248 80iteration
(ms)

Table 3: Computation times comparison with state-of-the-art methods and
ground truth (i.e., high resolution) on an example as shown in Fig. 12.

and upsample the splash volume for 200 frames), our method 24

faithfully reproduces realistic and parameterizable splash de- 25

tails with less than one second per frame at runtime. According 26

to this demonstration, our approach achieves a speedup factor 27

of more than 100× over the high-resolution reference (see Ta- 28

ble 2). Furthermore, the advantages of our approach also be- 29

come apparent when simulating with different sets of values for 30

parameters in order to obtain the desired result (e.g., as shown 31

with Fig. 16). We also experiment with our approach in a more 32

dynamic environment. The River scenario (available in the ac- 33

companying video) demonstrates the flexibility of our approach 34

on a high-velocity flow. As explained in § 4.1, we compute 35

the splash volume from the first collision between the upsam- 36

pling and colliding volumes (i.e., Ωup and Ωc). However, in 37

this case, since the initial velocity of the upsampling volume is 38

fairly high, we process the upsampling step at the first collision 39

frame. 40

8.3. Liquid-Liquid Interactions 41

We also provide examples of liquid-liquid interactions. This 42

type of scenario can produce an adequate splash volume by sep- 43

arating the input liquid into different volumes. For instance, 44

with the Spherical drop scenario (Fig. 9), we divided at initial- 45

ization the domain into two parts: the sphere and the liquid in 46

the container. The sphere is handled similarly to a mesh in the 47

sense that we pre-compute an SDF based on the related coarse 48

particles. The resolution used for computing the level set needs 49

to be high enough to capture and separate at the initial state (i.e., 50

at the first frame or at emission) the input coarse liquid into dis- 51

tinct volumes. We used a resolution of 1283 in all our examples 52

and it has proved to be sufficient for our purposes. 53
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Fig. 13: Hulk’s wrath is a good example of our approach with solid-liquid interactions. (top) The splash is almost nonexistent in the low-resolution example.
(bottom) Our method manages to generate a realistic splashing liquid out of this very coarse liquid.

(a) Uniform upsampling (b) Emerge-tendency upsampling

Fig. 14: This crown splash example shows a comparison with a naive (a) uni-
form upsampling method and (b) our upsampling method (right). (Bottom) The
density of particles per cell is shown in green inside the splash volume (red).

8.4. Comparison with Spray Particles1

We compared our approach with state-of-the-art spray par-2

ticle methods. In order to present a fair comparison, only the3

contributions associated with spray particles are exposed. As4

shown in Fig. 12(b), Chentanez and Müller [42] introduce a5

very diffuse model to simulate spray particles. Since they target6

real-time applications, their spray model is added on top of a7

heightfield fluid, preventing particle-particle interactions. More8

similarly to ours, Ihmsen et al. [40] present a fully procedural9

spray model adapted for particle-based liquids. Their approach10

is capable of generating convincing diffuse behaviors, the mo-11

tion of the spray particles is solely influenced by external forces12

and gravity (similar to our upsampled particles flagged as bal-13

listics). This is where our approach and the purpose of tracers14

stand out. The localized forces applied by the tracers reproduce15

a better surface-tension behavior (Fig. 12(d)) as compared to16

the spray particles proposed by Ihmsen et al. [40] (Fig. 12(c)).17

Moreover, our implicit linear wave model generates smooth18

swirls at the base of the crown splash, introducing better in-19

teractions between our upsampled model and the coarse input20

liquid, as opposed to Ihmsen et al. [40].21

8.5. Integration with Hybrid-DFSPH 22

To demonstrate that our approach works with most particle- 23

based methods, we implemented our splash volume and upsam- 24

pling method in a hybrid DFSPH model [8] (results are shown 25

in the accompanying video). Although the velocity field can be 26

estimated from the particle velocities, using the one provided 27

from a hybrid model is even better. Our approach is completely 28

independent of the input architecture. Nevertheless, we had 29

to constraint the upsampling step to focus on regions with the 30

splash volume bounded by the input narrow band of particles. 31

We experiment with different strategies but doing so prevents us 32

from generating artifacts deep under the liquid interface (i.e., in 33

the Eulerian portion of the simulation). 34

8.6. Comparison with Uniform Upsampling 35

As shown in Fig. 14, our upsampling method faithfully pre- 36

serves the small-scale details at the top of the crown splash (im- 37

age on the right) while a uniform upsampling (image on the 38

left) causes clustering of particles at the base of the splash, in 39

regions where velocity magnitudes tend to be zero over time. 40

Adding particles to these regions will hardly contribute to in- 41

crease details. Our upsampling method offers a more effective 42

way to upsample and distribute particles within the splash vol- 43

ume. As shown in the graph of Fig. 15, our upsampling method 44

presents a distribution trend similar to the one of the Maxwell- 45

Boltzmann distribution. As stated by Mandl [59] and in refer- 46

ence to the Maxwell-Boltzmann statistics, the density of parti- 47

cles highly depends on the distribution of velocities inside the 48

fluid. By oversampling particles in the regions identified by our 49

method, we ensure to solely increase particle density to bring 50

out fine details dissipated and bounded by the input resolution. 51

Also, since our method highly upsample a subdomain of the 52

input simulation, preserving such a distribution is critical for 53

detail enhancement and to avoid undesired particle clumping. 54

As expected, our upsampling method preserves a high density 55

of particles in cells with velocities close to ‖~̄u‖ (average velocity 56

norm). Low densities of particles are kept in cells with low ve- 57

locities and very high velocities (way above average). The low 58

densities of particles in high-velocity cells correspond to highly 59

diffuse particles (e.g., such as small droplets). 60
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Fig. 15: This graph plots the density against the velocity distribution exclusively
within the splash volume of the scenario shown in Fig. 14. ρ0 corresponds to the
number of particles per cell as used by the input coarse liquid; 6ρ0 represents
the maximum number of upsampled particles used in this examples (i.e., sup =

6). Also note that the dash plot (uniform upsampling) indicates many more
particles in total (upsampled) than the continuous blue plot (emerge-tendency
upsampling).

9. Conclusion and Future Work1

We have presented a flexible and physics-motivated post-2

processing approach to generate detailed and realistic splash3

behaviors from a coarser particle-based input liquid. Our ap-4

proach is divided into different steps. A splash volume is com-5

puted and upsampled by analyzing the surrounding environ-6

ment and by determining where sudden disturbances occur. The7

upsampled particles advected alongside the coarse liquid pro-8

vide a practical way to enrich portions of liquid that could not9

otherwise capture such details. We also provided a novel way10

to affect splashing particles through tracers and localized arti-11

ficial pressure corrections. Finally, our efficient implicit wave12

model offers a controllable method to process interactions be-13

tween upsampled splash particles and input particles. As noted14

by the statistics presented in Table 2, even if we compare the15

computation times by adding the simulation of a low-resolution16

liquid to our upsampling method, we still manage to outperform17

the reference high-resolution simulations. In addition, once the18

pre-calculation steps are completed, our method allows a user,19

without any limitation, to adjust the level of detail almost inter-20

actively.21

Nevertheless, our method suffers from a few limitations. First22

of all, precomputing the splash volume once for the whole an-23

imation prevents us from upsampling at different time inter-24

vals. In other words, highly dynamic scenarios would require25

an adaptive upsampling method to address frequent changes in26

the regions of interest through time. Our approach is currently27

designed to better suit scenarios in which the upsampled por-28

tion is initially static. An evolving 4D splash volume would29

be an interesting direction for future work. By tracking these30

splash volumes temporally, we could improve our upsampling31

method to cover complex interactions. Secondly and along the32

same lines, while our method offers a controllable way to im-33

prove the apparent resolution of splashing liquids, some high-34

resolution scenarios would hardly benefit from its current state.35

For example, simulating the collision between a high-velocity36

volume of liquid and a complex geometry (e.g., firehose shoot-37

ing water on a highly detailed armadillo) would barely benefit38

from our proposed upsampling approach.39

Because of the flexibility of our approach, we plan to ex- 40

plore more art-directable methods to use controls similar to our 41

tracers as a modeling tool for splashes and turbulent flows. It 42

would be also relevant to improve the steps of upsampling and 43

tracer seeding at different scales through machine learning tech- 44

niques. State-of-the-art neural network approaches could im- 45

prove the prediction on seeding locations for better results. It 46

could also provide an efficient way to upsample particles based 47

on learned high-resolution examples, and result in even more 48

similar splashes. 49

References 50

[1] Solenthaler, B, Pajarola, R. Predictive-corrective incompressible SPH. 51

ACM Trans on Graphics (TOG) 2009;28(3):40. 52

[2] Ihmsen, M, Cornelis, J, Solenthaler, B, Horvath, C, Teschner, M. 53

Implicit incompressible SPH. IEEE Trans on Visualization and Computer 54

Graphics 2014;20(3):426–435. 55

[3] Bender, J, Koschier, D. Divergence-free SPH for incompressible and 56

viscous fluids. IEEE Trans on Visualization and Computer Graphics 57

2017;23(3):1193–1206. 58

[4] Zhu, Y, Bridson, R. Animating sand as a fluid. ACM Trans on Graphics 59

(TOG) 2005;24(3):965–972. 60

[5] Boyd, L, Bridson, R. MultiFLIP for energetic two-phase fluid simula- 61

tion. ACM Trans on Graphics (TOG) 2012;31(2):16. 62

[6] Ando, R, Thurey, N, Tsuruno, R. Preserving fluid sheets with adaptively 63

sampled anisotropic particles. IEEE Trans on Visualization and Computer 64

Graphics 2012;18(8):1202–1214. 65

[7] Ferstl, F, Ando, R, Wojtan, C, Westermann, R, Thuerey, N. 66

Narrow band FLIP for liquid simulations. Computer Graphics Forum 67

2016;35(2):225–232. 68

[8] Roy, B, Poulin, P. A hybrid Eulerian-DFSPH scheme for efficient surface 69

band liquid simulation. Computers & Graphics 2018;77:194–204. 70

[9] Ihmsen, M, Orthmann, J, Solenthaler, B, Kolb, A, Teschner, M. SPH 71

fluids in computer graphics. In: Eurographics - State of the Art Reports. 72

2014,. 73

[10] Bridson, R. Fluid Simulation for Computer Graphics. CRC Press; 2015. 74
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