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Figure 1: Texturing fluid animation with deformable patches distributed as a Poisson disk distribution. We adapt the Poisson disk distribution
by fading in and fading out patches associated with newly added and removed Poisson disks. Deformable patches and their resulting blending
are shown on the left side and the texture mapping appears on the right.

Abstract
We propose an approach for temporally coherent patch-based texture synthesis on the free surface of fluids. Our approach is
applied as a post-process, using the surface and velocity field from any fluid simulator. We apply the texture from the exemplar
through multiple local mesh patches fitted to the surface and mapped to the exemplar. Our patches are constructed from the
fluid free surface by taking a subsection of the free surface mesh. As such, they are initially very well adapted to the fluid’s
surface, and can later deform according to the free surface velocity field, allowing a greater ability to represent surface motion
than rigid or 2D grid-based patches. From one frame to the next, the patch centers and surrounding patch vertices are advected
according to the velocity field. We seek to maintain a Poisson disk distribution of patches, and following advection, the Poisson
disk criterion determines where to add new patches and which patches should e flagged for removal. The removal considers the
local number of patches: in regions containing too many patches, we accelerate the temporal removal. This reduces the number
of patches while still meeting the Poisson disk criterion. Reducing areas with too many patches speeds up the computation
and avoids patch-blending artifacts. The final step of our approach creates the overall texture in an atlas where each texel is
computed from the patches using a contrast-preserving blending function. Our tests show that the approach works well on free
surfaces undergoing significant deformation and topological changes. Furthermore, we show that our approach provides good
results for many fluid simulation scenarios, and with many texture exemplars. We also confirm that the optical flow from the
resulting texture matches the fluid velocity field. Overall, our approach compares favorably against recent work in this area.

CCS Concepts
• Computing methodologies → Texturing;
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1. Introduction

Texture mapping is commonly used to add details to 3D surfaces.
However, the texture may be distorted by surface curvature. Dy-
namic meshes introduce further complexity, and fluid animations
are especially challenging, since the surface topology can change.
Texturing a dynamic mesh is still a nontrivial problem with unan-
swered questions.

One category of methods applicable to fluids synthesizes the tex-
ture with a patch-based search [KAK∗07]. This is very effective in
maintaining the overall look of the texture exemplar. Nevertheless,
it makes it much harder for the pattern to be deformed according to
the flow of the fluid.

Another category of methods synthesizes the texture by advect-
ing patches on the surface. This greatly improves the temporal co-
herence of the synthesized texture, which is why we decided to fo-
cus our attention on such methods. Some methods rely on “rigid”
patches [GDP16] and have a tendency to show “blocky” artifacts,
where the resulting animation feels too rigid since it does not com-
pletely respect the velocity field.

Other methods use 2D deformable grids [YNBH11], and while
this can be effective for deformations on mostly 2D fluids, it is
not directly applicable to 3D fluids with splashes and topological
changes. Small details such as splashes are also hard to handle, as
it is difficult to have a good distribution of patches on elements with
small surface areas. It is hard for the Poisson disk distribution tech-
niques used by most patch-based methods to balance between the
number of disks to assign to small regions and patch distortion con-
cerns when wrapping the patches onto the fluid surface. Ultimately,
concerns related to the deformation and distribution of patches ne-
cessitate the use of small texture patches, which limits the range of
applicability of earlier patch-based texture synthesis methods. Fur-
thermore, patch-based methods face difficulties in handling con-
verging fluid flows. While some methods provide reasonable re-
sults for 2D flows, this problem is exacerbated when considering
3D fluids, as they are prone to accumulating many patches in some
areas depending on the flow and surface curvature. The source of
the problem is that patches are faded at a constant rate, causing
an accumulation of fading patches in regions where the fluid con-
verges or 3D fluids merge together. Patch-based methods lead to
artifacts when the density of patches is too high.

Methods relying on layered patches [GDP16] suffer from a
degradation of the synthesized texture which is composed of many
small inconsistent pieces of the exemplar. Other methods that rely
on contrast-preserving blending [YNBH11] are hindered by greatly
reduced blending quality, as the contrast-preserving blending can
lead to colors outside the [0,1] range, and the likelihood of this
increases with the number of blended patches.

In contrast to previous patch-based methods, our patches are cre-
ated directly on the surface of the fluid, by taking a subsection of
the surface mesh. This ensures that the patches are not distorted at
the time of creation; they can later deform according to the veloc-
ity field, providing greater ability to represent surface motion than
rigid or 2D grid-based patches. We validated this advantage of our
approach by comparing the texture’s optical flow with the fluid’s
velocity field. To prevent patch accumulation during advection, we

propose a temporal patch removal approach that considers the lo-
cal number of patches: in regions containing too many patches, we
accelerate the temporal removal. The opposite problem of patch
accumulation consists of a lack of patches on small details, such
as splashes. We improve the distribution of patches by refining the
Poisson disk criterion, making it better adapted to the context of
small details and patches that need to be wrapped to the fluid’s sur-
face. To this end, we use the normal of the surface and an ellipsoid
form instead of a sampling sphere. The main contributions of the
proposed texture synthesis method can be summarized as follows:

• Distortion reduction by creating patches from the surface;
• Dynamic fade-in and fade-out with adaptive speed related to

density;
• Poisson disk criterion adapted to small features and splashes.

We obtain best results for high-frequency, stochastic, isotropic tex-
tures, as is characteristic of lapped texture synthesis. However, we
do not make any assumptions with respect to the exemplar, and the
results are reasonable for more structured textures. We tested our
approach on many scenarios, and show that the resulting textures
are temporally coherent and well adapted to the flow of the fluid.

2. Related work

Two texture synthesis strategies are predominantly used for textur-
ing fluids: pixel-based and patch-based [BZ17, WLKT09]. Textur-
ing fluids is difficult, and consequently, many methods [KEBK05,
JFA∗15, YNBH11] concentrate on the sub-problem of 2D fluids
and flows. The texture optimization method [KEBK05] synthesizes
its results in image space, making it hard to extend to the surface
of 3D fluids. While the method uses patches for the synthesis, the
patches are at fixed positions, and cannot deform, which makes
it harder to adapt to various types of flows. LazyFluids [JFA∗15]
uses per-pixel best-match searches instead of patch-based searches.
While this increases the precision, the patterns remain stiff as the
search windows do not deform. Furthermore, it is also limited to
synthesis in image space, and as such, is hard to extend to 3D fluids.
The pioneering work of Stora et al. [SAC∗99] advected lava clinker
with simple texture from noise functions. Lagrangian texture ad-
vection [YNBH11] uses deformable patches which are advected
based on the flow field. Even though this method works only in 2D,
it investigated the problem of distortion of the texture pattern. Our
approach extends the 2D deformable patches to deformable surface
patches, allowing us to conduct texture synthesis on the free surface
of arbitrary fluid simulations, and not only on 2D surfaces.

Few methods deal with 3D fluids. Kwatra et al. [KAK∗07] ex-
tend the 2D texture optimization method [KEBK05] to 3D. They
store the colors on the vertices of the fluid’s free surface instead of
in image space. While their method can texture 3D fluids, it has the
disadvantage of locking the texture resolution to the resolution of
the simulation mesh. Furthermore, by still relying on rigid patches
for their best match search and synthesis, they need to resample the
vertices to a square grid where they conduct the texture synthesis,
and then need to resample in order to transfer the new colors back to
the vertices. Narain et al. [NKL∗07] and Bargteil et al. [BSM∗06]
essentially extend the work of Kwatra et al. [KAK∗07] to allow the
use of a feature map, but their texture synthesis methods rely on

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



Gagnon, Guzmán, Vervondel, Dagenais, Mould & Paquette / Distribution Update of Deformable Patches for Texture Synthesis

the same basis as Kwatra et al., and consequently inherit the same
drawbacks. Similar to Lagrangian texture advection [YNBH11],
the dynamic lapped texture method [GDP16] uses patches on the
surface of the liquid. This method works in 3D and provides rea-
sonable results for scenarios including splashes. However, it has
two main drawbacks. First, the patches do not deform with respect
to the flow of the 3D liquid, and instead, only deform to conform to
the surface of the fluid. Second, the method uses layered patches,
as opposed to a contrast-preserving blending. The layering has the
disadvantage of showing many small and inconsistent pieces of the
exemplar in regions where many patches accumulate because of the
temporal removal.

Our goal is to take advantage of the best strategies from patch-
based texture synthesis methods. We move away from 2D synthe-
sis methods, and while our approach can still handle 2D fluids, it
is built for 3D fluids. We improve upon the deformable patches of
Lagrangian texture advection [YNBH11], while also using the 3D
patch advection of dynamic lapped textures [GDP16]. Given our
new deformable patches, our texture deformation better follows
the fluid flow than the non-deforming patch-based search meth-
ods [BSM∗06, KAK∗07, NKL∗07].

3. Overview

In this section, we present an overview of the proposed approach.
Key concepts are illustrated in Fig. 2.

We start with an animated mesh, where each vertex has a ve-
locity vector, usually arising from a fluid simulation. The goal is
to use patch-based synthesis to synthesize a texture over the mesh.
The first step of the approach is to sample the surface with a Poisson
disk distribution on the first frame of the animation. Next, we create
a deformable patch which contains uv coordinates for each Pois-
son disk based on the mesh vertices surrounding it. For each patch
and each patch vertex, we compute a contribution weight that will
be used to compute the texel’s color. Once the weights have been
computed, we can finalize the texture synthesis by calculating, for
each texel, a final color, which is a weighted combination of the
contributing patches.

In subsequent frames of the animation, we advect the Poisson
disks and the vertices of the deformable patches according to the
velocity field. To minimize distortion, we repair the overall texture
by updating the patch representation: we remove patches with ex-
cessive distortion, eliminate patches in areas that are too crowded,
and add new patches where there are gaps on the surface. The new
patch distribution is used to compute the texture for the current
frame. Patch removal and addition are not instantaneous. Rather,
patches fade out (or in) over time at a rate determined by the local
patch density. Details are provided in Sec. 6.3.

Our approach is inspired by the method of Yu et al. [YNBH11],
which we extend to work on free surfaces. The differences between
our approach and that of Yu et al. [YNBH11] are listed in Table 1.

A Poisson disk distribution is not designed to handle details
smaller than the Poisson disk radius. Therefore, we propose a so-
lution using the plane of the surface’s normal, combined with an
ellipsoid volume per patch as the Poisson disk criterion, which is

Table 1: Comparison between our approach and that of Yu et
al. [YNBH11].

Yu et al. [YNBH11] Our approach
Poisson Disk sampling in 2D Poisson Disk sampling in 3D
2D grid of vertices 3D set of vertices
Orthogonal uv projection uv flattening [LPRM02]
2D advection 3D advection on free surface
No topological changes Handling topological changes
Linear patch fading Dynamic patch fading

discussed in Sec. 4. Creating deformable patches is tricky when we
have a curved surface and complex mesh topology. The creation
of deformable patches is discussed in Sec. 5. Deformable patches
need to be updated over time in a consistent fashion in order to pre-
serve their texture exemplar’s features spatially and temporally. We
fade in and out patches at a rate influenced by density of patches;
details of the entire approach are discussed in Sec. 6.

4. Distribution on curved surfaces

This section describes our approach to surface sampling. We want
to avoid two problematic conditions: areas of the surface with no
patches, and areas on the surface with too many patches. We sample
the surface with a Poisson disk distribution on the first frame. On
subsequent frames, we compute a new Poisson disk distribution
using the advected disks as a starting point. This allows us to check
if it is possible to add new patches or if we need to delete some of
them.

There are multiple Poisson disk sampling methods available;
some of these work in 2D, and others in 3D. For our purpose, we
need to sample curved surfaces, and we want to be able to dis-
tribute more samples in high curvature areas, such as splashes or
thin threads. These concerns are important since we do not want
our patches to deform too much when wrapping on the fluid sur-
face, as this would cause unwanted texture stretch. As shown in
Fig. 3a, when dealing with nearby surfaces, and only considering
a 3D Poisson radius r, samples on one surface count toward the
Poisson criterion of the other surface, leading to an undesired un-
dersampling.

To fix this issue and provide an appropriate surface sampling, we
propose using two criteria:

• no other Poisson disk should be inserted within the radius r of
another disk only if both disks are in the same plane;
• no other Poisson disk should be inserted inside an ellipsoid de-

fined by the surface and disk.

The plane of a specific Poisson disk is computed from the nor-
mal N evaluated where the disk lies on the surface. When testing
to add a new disk, we reject it only if it is in the same plane and if
it is within the radius r. We thus test if the normal Nc at the candi-
date location is too close to the normal N of the disk, determined
by checking whether the value of the dot product is above a given
threshold: Nc ·N > pa. For results shows in this paper, we set pa to
0.5.

These criteria are illustrated in Fig. 3. We can see in Fig. 3a that
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(a) (b) (c) (d)

Figure 2: Key concepts of the proposed approach: (a) Initial Poisson disk distribution. (b) Visualization of deformable patches, where each
patch is assigned a different color. (c) Patch distribution update; green disks are kept, red disks will be removed, blue disks are added. (d)
The final synthesized texture.

(a)

(b)

(c)

Figure 3: Example of underlying surfaces (in blue), with Poisson
disks (in magenta) and their related Poisson points (in green): (a)
Poisson disks with 3D radius r criterion. (b) Poisson disks with dis-
tance and plane criteria. (c) Poisson disks with ellipsoid distance
and plane criteria.

Figure 4: Our k-criterion corresponding to an ellipsoid (shown in
magenta) having thickness cs in the normal direction N and width
r. Candidate samples within this ellipsoid are rejected.

there are regions not covered by any sample when only the distance
r is used. In Fig. 3b, we add the orientation to the criterion, but some
regions remain uncovered. Finally, Fig. 3c shows the result of using
the ellipsoid in combination with the orientation, producing a better
surface sampling.

We will refer to the ellipsoid criterion as the k-criterion. A can-
didate disk located at p is too close to another one if the following
condition holds:

k(p) = x2

r2 +
y2

r2 +
z2

cs2 < 1, (1)

where cs is the ellipsoid thickness and x, y, and z are the coordinates
of the tested point in the tangent space of the Poisson disk, where
z points in the same direction as the normal N. The geometry is il-
lustrated in Fig. 4. This ellipsoid thickness should be smaller than
the smallest detail of the fluid animation. The point (x,y,z) is inside
the ellipsoid when k(p) is less than 1. With the k-criterion, we are
able to fit thin surface details, as well as to address the undersam-
pling problem shown in Fig. 5a; see Fig. 5b for an illustration of
the result.
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(a) (b)

Figure 5: (a) Regular 3D Poisson disk distribution does not dis-
tribute enough disks in the region where the lower part of the sphere
is close to the plane; (b) samples cover the lower part of the sphere
when using our k-criterion.

Figure 6: Representation of a deformable patch with the Poisson
disk (outer ring), the selected polygons, and the uv coordinates.
The kill zone (inner ring) is the threshold where we identify patches
too close to each other.

5. Deformable patches

This section describes the proposed approach to handle surface de-
formation by using deformable patches. A deformable patch con-
sists of the surface polygons surrounding the patch center; the poly-
gon’s vertices can then be advected independently while maintain-
ing their texture coordinates, allowing the patch to deform.

5.1. Patch creation using surrounding polygons

A deformable patch is created by duplicating the polygons of the
surface mesh surrounding the Poisson disk sample. The distance
used to select polygons is slightly greater than the ellipsoid used
in equation 1 to ensure that there will be enough polygons on the
border of the patch (Fig 6). We exclude polygons that are not in the
same plane as the Poisson disk, using the dot product test described
in Sec. 4. The resulting set of polygons can be flattened to the uv
coordinate space of the exemplar. To ensure minimal distortion of
the uv coordinate assignment over the 3D patch, we use the param-
eterization given by Least Squares Conformal Maps [LPRM02].

5.2. Patch advection

We advect the vertices of each patch according to the velocity
field on the surface. The examples presented in this paper relied
on an implicit surface reconstruction (with independent meshes at
each frame), but our method would work as well with an explicit
mesh [DGP17]. Since the surface can undergo drastic and sudden

topological changes, such as splits and merges, we must update
vertices accordingly and remove any part of the patch that cannot
follow the surface. Using an Euclidean distance threshold mpt, we
remove from the patch all vertices that end up too far from the sur-
face of the fluid. This removal allows for the introduction of new
patches, leading to an overall patch distribution that is more faithful
to the motion of the fluid’s surface. Vertices below this threshold
are projected onto the surface. The value of the threshold mpt is
adjusted considering the scene scale and the fluid simulation. If a
patch ends up stretched between two disconnected components of
the fluid, it is identified as distorted and removed, as explained in
the next section.

5.3. Distortion estimation

Over the animation, every patch can deform, and the deformation
can produce visible distortions in the resulting synthesis. Therefore,
as in the work of Yu et al. [YNBH11], we detect distortion with
the distortion metric of Sorkine et al. [SCOGL02]. Excessively dis-
torted patches will be removed and replaced with undistorted ones;
we consider a patch to be excessively distorted when the distortion
value δmax exceeds 3.

5.4. Poisson disk distribution update

With the creation and subsequent advection of deformable patches,
we obtain deformed and displaced patches. We previously detected
distorted patches, as described in Sec. 5.3. To maintain a uniform
distribution of patches, we use the new patch positions to flag the
patches to remove and insert new patches where there is a gap. In
addition to distorted patches, we also want to remove patches that
are too close to each other. These are the patches whose centers fall
within the “kill distance” (1−α)d of another patch, as illustrated in
Fig. 6. Where there is a gap on the surface, we insert a new Poisson
disk and its corresponding patch.

The Poisson disk distribution is done frame by frame, allowing
us both to flag patches that are too close to each other. and to iden-
tify regions where new patches are needed. Finally, the distortion
metric points out which patches need to be deleted because they are
too distorted. The Poisson disks have four states:

• fading in
• active
• fading out (too distorted)
• fading out (too close)

The transition between states is illustrated in the accompanying
video. Note that during the Poisson disk distribution update, we
ignore the fading out patches.

6. Blending

The last step of the approach is to blend all patches together to syn-
thesize the final texture atlas. This process is done on every frame
of the fluid animation. First, for each vertex of each patch, a vertex
weight is computed. Using this value, we then calculate the color
of each texel using the blending function described in Sec. 6.4.
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6.1. Patch update

After the advection, with the updated distribution, we can compute
the quality of each vertex of a deformable patch at a time t. To do so,
we compute a weight per vertex. A vertex weight wV (t) calculation
was introduced by Yu et al. [YNBH11]:

wV (t) = Ks(V )Kt(t). (2)

The overall weight wV is the product of a spatial weight Ks(V ) and a
temporal weight Kt(t). The weight wV will be used in the blending
computation to synthesize the texture, as described in Sec. 6.

6.2. Spatial component

The spatial component Ks improves the continuity at the borders
of the patches. The idea is to get the full color of the texture at
the center of the patch, and to let this color contribution fall off to-
wards the borders. To this end, we have Ks equal to 1 at the center
and 0 at the border. We use a linear blending, where Ks varies ac-
cording to the distance between the vertex V and the patch center
p. To compute the 3D distance between V and p, we modify the
Ks computation given by Yu et al. [YNBH11]: instead of comput-
ing the distance between vertex V and the Poisson disk center p in
three dimensional space, we compute the distance between vertex
Vuv and the disk center puv in uv space. Thus, when the patch is de-
formed, we always have the same distance in texture space, and the
linear blending is consistent over time. Moreover, to give the user
more control over the look of the texture synthesis, we also allow
scaling s of the uv coordinates. The equation from Yu et al. is as
follows:

Ks(V ) = (1− ||V − p||
d

)dV Qv. (3)

We replace this with the following:

Ks(V ) = (1− ||Vuv− puv||
duv

)sdV Qv. (4)

6.3. Density-based temporal component

We also modify the temporal component Kt(t) from Yu et
al. [YNBH11], using a density-based fading. Fading out and fad-
ing in patches over a fixed number of frames works well when the
velocity field does not change too rapidly. However, in fluid sim-
ulations, the velocity on the surface can change quickly, resulting
in large amounts of patches that get stacked and have to be deleted.
We propose to change the fading according to the density of patches
in the patch’s ellipsoid volume. Yu et al. fade over a fixed number
of frames τ:

Kt(t) =


t
τ

if t < τ

1 if τ < t < tk
1− t−tk

τ
if tk < t < tk + τ

. (5)

In contrast to the fixed linear evolution of Kt(t) in the equation
above, our fading value is adjusted dynamically based on the den-
sity:

Kt(t) =


min

(
1, t

τ
(ρ+1)

)
if t < τ

1 if τ < t < tk
max

(
0,1− t−tk

τ
(ρ+1)

)
if tk < t < tk + τ

, (6)

(a) (b)

Figure 7: (a) Linear fading vs. (b) density-based fading.

where tk is the time at which the patch is flagged to be removed,
and ρ is the density of the current patch’s Poisson disk. When Kt(t)
reaches 1 (fading in) or 0 (fading out), we terminate the fading pro-
cess, thus dynamically changing the number of frames over which
we apply fading. The density ρ is computed using the number of
neighbors of the Poisson disk in the same plane and inside the ra-
dius r. We consider all patches when computing the density, irre-
spective of their current state. Patches will both fade in and fade out
faster when there are more overlapping patches. Locations where
we have large distortions trigger a lot of distorted patch removal,
and the last line of Eq. 6 ensures their quick removal. However, re-
moving many patches in turn triggers their replacement by many
new patches. If patches here were to fade in slowly, there would be
a good chance that they would be highly distorted by the time they
have completely arrived, and thus they would need to be removed
immediately. The first line of Eq. 6 ensures that patches fade in
quickly, increasing the time during which the surface is covered by
undistorted patches.

Under Equation 6, it is possible to encounter very large ρ, poten-
tially producing a negative Kt(t). When Kt becomes negative for
any patch, we remove the patch immediately.

In practice, the number of overlapping patches is related to the
local velocity and deformation. Changing the rate of the fading at
these locations looks visually plausible and involves fewer blend-
ing artifacts, as shown in Fig. 7. Indeed, we can see in this example
that the numbers from the texture exemplar are easier to read be-
cause they involve less blending. In the end, we have fewer stacking
artifacts, and the final texture can be computed more quickly as it
involves blending fewer patches.

6.4. Blending function

The vertex weight wV (t) is then used in the following blending
function introduced by Yu et al. [YNBH11]:

R′(x) = ∑wi(x))(R(ui(x))− R̂)√
∑w2

i (x)
+ R̂ (7)

where R′(x) is the pixel to compute, R̂ is the mean of the texture
sample, and ui(x) is the texture mapping.
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(a) (b)

Figure 8: 2D rotational flow using a gravel texture exemplar, at
frame 1 (a) and 240 (b).

(a) (b)

Figure 9: 2D split using a bubble texture exemplar, at frame 1 (a)
and 240 (b).

All the pixels are computed on a texture atlas. We use the ap-
proach of Lévy [LPRM02] to generate the texture mapping be-
tween the atlas and the fluid surface. The results of the blending
are illustrated in Fig. 8.

7. Results

We tested our approach using several fluid simulation scenarios
similar to those from related work:

• 2D rotation flow, as in the paper of Yu et al. [YNBH11] (Fig. 8)
• 2D with split and merge (Fig. 10)
• 2D flow with split, as in the paper of Yu et al. [YNBH11] (Fig. 9)
• 3D viscous drop, as in the paper of Gagnon et al. [GDP16]

(Fig. 13)
• 3D liquid dam break, as in the papers of Kwatra et al. [KAK∗07]

and Gagnon et al. [GDP16] (Fig. 14)
• 3D lava drop, as in the paper of Gagnon et al. [GDP16] (Fig. 12c)

Table 2 summarizes the statistics for the scenarios shown in the
paper and video.

We compared our results with the method of Kwatra et
al. [KAK∗07]. Their method works best with small exemplars (for
example, resolutions 64×64 or 128×128). Using larger exemplars
has a severe negative impact on computation times, and compli-
cates the selection of the window size for the best match search,

(a) (b)

Figure 10: 2D fluid with split and merge, at frame 1 (a) and 140
(b).

Table 2: Statistics of our examples. “Nb poly” is the average num-
ber of polygons on the fluid’s mesh, “Nb patch” is the average
number of patches, and “Atlas res” is the resolution (in pixels) of
the computed atlas. Computation times for the Poisson disk cre-
ation, patch creation, and atlas creation are in seconds. The patch
advection is negligible, taking less than 0.6 seconds for all of our
examples. The patch and atlas creation steps are computed in par-
allel (on 20 cores in our tests). Our computations were conducted
on a 2.80 GHz Intel Xeon R© E5-2680 CPU.

Nb Nb Atlas Poisson Patch Atlas Total
polypatch res disk

Dam Break 7k 6900 6k2 15 30 45 90
Viscous drop 28k 1740 6k2 10 4 101 115
Split & merge 5k 674 1k2 3 1.1 2 6.1
Split Y 6k 584 1k2 0.5 1 1.3 2.8
Lava 51k 5700 6k2 40 4 142 186

since the size of the window is related to the size of the patterns
to replicate. Larger window sizes, required for larger exemplars,
in turn also have a negative impact on computation times. For our
method, either small or large exemplars can be used with negligible
impact on computation time. As noted by Jamriska et al. [JFA∗15],
the method of Kwatra et al. [KAK∗07] does not work for all texture
exemplars, as it can lead to a wash-out effect, where the synthesized
texture becomes too homogeneous and blurry. As can be seen in
the video, the method of Kwatra et al. works better than ours when
dealing with structured patterns. On the other hand, stochastic and
isotropic textures are one of the causes of the wash-out observed
in the synthesized results of Kwatra et al.’s method. In the accom-
panying video, we can see that our method preserves more of the
exemplar colors and structure, as compared to the washed-out re-
sult from Kwatra et al.’s method.

We also compared our results with those of Gagnon et
al. [GDP16] (Fig. 12). In their results, we can sometimes identify
individual patches. With the large and rigid patches they use, we
can observe blocky artifacts, and the optical flow is less respected.
In comparison, with our approach, it is difficult to guess the bound-
aries of the patches, and very fine texture details remain visible
in our output. In addition, we maintain a correspondence between
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the texture movement and the free surface movement despite us-
ing large patches. As can be seen in the figures, as well as the

Figure 11: Dam break with stone texture exemplar (inset).

accompanying video, our approach works well on 2D examples
(Fig. 8); with 3D viscous fluids (Figs. 12c and 13); and with 3D
liquids (Fig.14). We can also synthesize different textures using the
same deformable patch distribution, simply by changing the texture
exemplar (Fig 13).

We should take particular note of Fig. 14, where the simulation
has produced a complex mesh with a fine structure. The texture
covers the mesh seamlessly and with good fidelity to the exem-
plar. In the accompanying video, it can be seen that our approach
copes well with the entire animation despite the presence of multi-
ple topological changes in the splashing liquid.

With the deformable patch representation, the texture conforms
well to the movement of the fluid surface irrespective of any topo-
logical changes. We further demonstrate this in Fig. 15 and in the
accompanying video, where we compare the fluid’s velocity field
(shown in blue) with the optical flow of the rendering (shown in
green). The two fields are in close agreement, thus showing that the
texture synthesis is able to match the liquid flow.

Thanks to the patch advection and Poisson distribution update,
there are no regions with excessive numbers of patches or severe
distortion. Moreover, with the density-based fading, we have fewer
patches, and thus faster computation and fewer ghosting artifacts.

An added benefit of our approach is that we can apply other tex-
turing techniques on fluids. For example, Fig. 1, 2, 11, 12c, and
14 use displacement mapping, while Fig. 13 uses normal mapping.
Corresponding scenarios found in the accompanying video also use
displacement and normal mapping.

7.1. Limitations

One limitation of our approach appears in scenarios where the fluid
stops or barely moves. Patches will continue to fade in and out for
several frames, even if the velocity is very small or null. The fad-
ing sometimes leads to the impression that the fluid continues to
move slightly. In the video of the rotational flow (Fig. 8), the slow

movement makes it easier to note the fading in and out near the
center.

Our approach also exhibits lengthy computation times; each
frame can take a few minutes to compute, depending on the com-
plexity of the fluid’s animation. The advection and the patch cre-
ation times are similar to those of Gagnon et al. [GDP16]. How-
ever, the texture synthesis time can be more significant. Indeed,
since for each output texel we are using a blending of all overlap-
ping patches, we need to compute the exact position of the texel on
the 3D surface. With this 3D texel position, we perform a projection
through all intersecting patch triangles to get the uv coordinate that
will provide the patch’s texel. The large number of required projec-
tions acts as a bottleneck for the overall texture synthesis process.

Even with the density-based fading, some scenarios still produce
visible ghosting effects. Just as with Yu et al.’s method [YNBH11],
this is inevitable because blending is used to combine the color
of the patches overlapping the same region of the surface. The
contrast-preserving blending (Eq. 7) reduces blurring at the ex-
pense of increased ghosting. Regular blending could be used when
results with less ghosting are preferable. The ghosting is also wors-
ened with structured textures, as illustrated in Fig. 16.

8. Conclusion

We have presented an approach for synthesizing texture on the free
surface of animated fluids. The proposed approach creates textured
patches with limited distortion, based on a Poisson disk distribu-
tion. We want a good distribution for the specific case of fluids
with small details, such as splashes and thin films, and we need to
account for patches that will be wrapped on the fluid’s surface. The
update of the distribution and of the patches fully supports topo-
logical changes. We presented a more elaborate temporal fading
out of patches, which allows control over their accumulation; this
is most noticeable in areas where the flow converges or where dif-
ferent regions of the surface come into contact. Finally, we showed
that the surface texture follows the velocity field of the fluid sim-
ulation, demonstrating this by comparing the optical flow with the
fluid velocities.

We believe this work can be extended to include a measure of
local velocity in our adaptive fading, further improving the texture
evolution. The blending function is another area of potential devel-
opment, further reducing ghosting beyond the improvements seen
in this paper. Another avenue to reduce the ghosting could involve
an extra step using a best-match search as in the method of Kwa-
tra et al. [KAK∗07], applied only in regions with excessive ghost-
ing.
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(a) (b) (c)

Figure 12: Lava simulation. Using texture exemplar (a), we compare between (b) Gagnon et al. [GDP16] and (c) our approach.

(a) (b) (c)

Figure 13: Different textures using the same underlying patch distribution.

Figure 14: Dam break example with splash filaments.

Appendix A: Input variables

Tables 3 and 4 describe the parameters of our approach.

Table 3: Input variables

Variable Description
d Poisson disk radius
pa Poisson disk plane angle
pva Patch vertex angle threshold
δmax Is the maximum deformation allowed, we use 3
s Scaling of the uv coordinates
mpt Maximum projection threshold to handle

topological changes
τ Fading speed
cs Ellipsoid thickness representing the smallest detail
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Figure 15: Test case demonstrating that the optical flow extracted
from the texture advection matches the velocity field from the fluid
simulation.

Figure 16: Ghosting artifacts can become visible, especially when
using a structured texture.
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