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A B S T R A C T

We propose an approach for real-time shallow water simulation, building upon the vir-
tual pipes model with multi-layered heightmaps. Our approach introduces the use of ex-
tended pipes that are capable of resolving flows through fully flooded passages, which is
not possible using current multi-layered techniques. We extend the virtual pipe method
with a physically-based viscosity model that is both fast and stable. Our viscosity model
is integrated implicitly without the expense of solving a large linear system. Despite the
few simplifications necessary to achieve a real-time viscosity model, we show that our
new viscosity model produces results that match the behavior of an offline fluid-implicit
particle (FLIP) simulation for various viscosity values. The liquid is rendered as a tri-
angular mesh surface built from a heightmap. We propose a novel surface optimization
approach that prevents interpenetrations of the liquid surface with the underlying terrain
geometry. To improve the realism of small-scale scenarios, we present a meniscus shad-
ing approach with a view-dependent adjustment of the liquid surface normals based on
a distance field. Our implementation runs in real time on various scenarios of roughly
10 × 10 cm at a resolution of 0.5 mm, with up to five layers.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction1

In this paper, we focus on a real-time simulation of shallow2

water at small scales, such as in scenarios of spilled coffee or3

bleeding during surgery (Fig. 1). In such situations, thin layers4

of liquid flow on a surface and may also eventually fill up small5

cavities. At this scale, effects such as the viscous drag force ex-6

erted on the liquid by the surface of the obstacles, as well as the7

meniscus at the wet–dry boundary, are much more prominent.8

In many real-time contexts, such as those involving medi-9

cal applications and games, it is necessary to have a very effi-10

cient simulation since other systems are running on the same11

∗Corresponding author: Tel.: +1-514-396-8587
e-mail: eric.paquette@etsmtl.ca (Eric Paquette)

resources (e.g., haptic feedback, other physics, AI). A full 3D 12

simulation is often too expensive; only very coarse resolutions 13

can be achieved in real time. However, a coarse 3D resolution 14

fails to represent thin films of liquids, such as blood or paint 15

flowing over a surface. To reduce computation times, several 16

methods focus on performing a 2D simulation on a heightmap; 17

these methods include those of Dagenais et al. [1], Chentanez 18

and Müller [2], and Mei et al. [3]. Such methods can simulate 19

liquids that are arbitrarily deep or shallow, with no impact on 20

the resolution of the simulation. 21

Our approach builds upon the virtual pipes (VP) method [4]. 22

With the exception of the work of Dagenais et al. [1], previous 23

papers do not use a physical model to handle the viscous drag 24

force from the terrain. This force is non-negligible for various 25

liquids such as blood and paint. To allow more complex ter- 26

http://www.sciencedirect.com
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Fig. 1: Frames from an animation where blood flows from a vertebra. Note the multiple overhangs and holes.

rain geometries that contain overhangs and holes, previous re-1

searchers extended virtual pipe methods to use a multi-layered2

heightmap [5] and created interconnections between the layers3

to allow the liquid to flow between them. Such configurations4

are important for different scenarios, such as when blood should5

flow below organs in a surgery simulation. Nevertheless, only6

the method of Dagenais et al. [1] handles the flow through fully7

flooded passages below obstacles, but is limited to axis-aligned8

passages. When passages get completely filled, previous meth-9

ods stop the flow for these cells, preventing future flow while10

the passages remain filled. Additionally, current multi-layered11

VP methods have a limited surface representation, with some12

leading to discontinuities in the surface mesh, while others are13

unable to accommodate multiple overlapping layers. Finally,14

most related work typically aims for large-scale simulations and15

ignores the surface meniscus shading.16

Our approach extends the work of Dagenais et al. [1], en-17

hancing both the behavior and the shading. The behavior is18

improved using a physically-based viscosity model and by con-19

sidering the flow below obstacles. Furthermore, our improved20

multi-layered surface reconstruction does not suffer from dis-21

continuity issues. Our surface optimization approach provides22

a correction to the mesh surface, preventing interpenetrations23

with the underlying terrain geometry. We work on the simu-24

lation of moderate amounts of liquid, roughly in the 10 ml to25

slightly over 1 liter range. At this scale, our new meniscus26

shading approach significantly improves the visual results of27

our simulations. To summarize, our contributions are as fol-28

lows:29

• We present a physically-based stable viscosity model and30

analyze its behavior compared to an offline simulation.31

• We propose two approaches allowing flow through pas-32

sages of any orientation and shape, including around cor-33

ners.34

• We perform independent multi-layered surface reconstruc-35

tion with smooth boundaries.36

• We use a surface optimization to prevent unwanted inter-37

penetrations between the heightmap and an arbitrary sur-38

face.39

• We propose a view-dependent correction of the normals to40

enhance the specular shading of the meniscus.41

2. Related work 42

In the computer graphics field, most fluid animation efforts 43

concentrate on offline simulations using either an Eulerian [6], 44

particle-based [7], or hybrid [8] simulation. Some work fo- 45

cuses computation on areas with more details using adaptive 46

grid structures [9], narrow band surfaces [10], or adaptive parti- 47

cle radii [7]. These methods are capable of generating astonish- 48

ing visual results, but are unfortunately too slow for real-time 49

applications. Macklin and Müller [11] were able to achieve im- 50

pressive visual results by simulating and rendering more than 51

100, 000 particles in real time using their position-based dy- 52

namics framework. While this method is real-time, its ability to 53

reproduce smooth thin layers of liquid is limited. 54

To reduce memory and computational costs, it is more effi- 55

cient to use a heightmap to represent the fluid and perform a 2D 56

simulation to update the liquid’s height. While methods using 57

the heightmap as such cannot exhibit some more complex be- 58

haviors such as splashes and wave crests, they are adequate for a 59

broad range of scenarios. For example, intricate wave patterns 60

in shallow water can be encoded as height displacements by 61

particles [12] or packets of similar wavelengths [13]. Further- 62

more, heightmap methods can simulate arbitrarily thin films of 63

liquids with no impact on the simulation resolution. Lee and 64

O’Sullivan [14] allowed some compressibility in their 2D sim- 65

ulation based on the Navier-Stokes equations and adjusted the 66

liquid’s height based on its density. While simple and efficient, 67

this technique does not account for the underlying terrain ele- 68

vation. By assuming a vertical anisotropy of the liquid’s ve- 69

locity, the Navier-Stokes equations can be simplified, resulting 70

in the shallow water equations, which can be further simpli- 71

fied to the shallow wave equations [15]. Several papers focus 72

on implicitly solving these equations on a regular grid [15, 16] 73

or on triangular mesh surfaces [17, 18]. Methods with an im- 74

plicit integration maintain stability at larger timesteps, but are 75

prone to a lot of diffusion as well as volume gain when using a 76

large timestep. Furthermore, faster-moving boundaries require 77

a smaller timestep, which can considerably increase the com- 78

putation time. On the other hand, Chentanez and Müller [2] 79

showed that their explicit integration of the shallow water equa- 80

tions is able to simulate large-scale scenarios in real time. For 81

their part, our experiments show that the explicit integration re- 82

quires a considerably smaller timestep for small-scale examples 83

because of the larger ratio between the liquid’s velocity and the 84

simulation cell size, which limits its use for real-time applica- 85

tions in that context. 86

A simpler model for simulating shallow water, the VP 87
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method, was introduced by O’Brien and Hodgins [19]. It is1

based on the hydrostatic pressure difference between neighbor2

cells of a uniform grid. Liquid is transferred between them3

through virtual pipes connected at their bottom, and the sim-4

ulation uses an explicit integration. This method has been ex-5

tended to support multi-layered heightmaps in order to allow6

simulations above partially submerged floating obstacles [5]7

and on more complex terrains with overhangs [20]. Further-8

more, our experiments show that the VP method allows a con-9

siderably larger timestep than with the shallow water method of10

Chentanez and Müller [2] for small-scale scenarios. As such,11

our approach builds upon the VP method to simulate real-time,12

small-scale shallow waters. Dagenais et al. [1] introduced a13

physically-based viscosity model to the VP method. We show14

that this viscosity model produces results that are similar to15

those of a full 3D offline simulation based on the Navier-Stokes16

equations. Dagenais et al. [1] also introduced another novelty17

to the VP method: the extended pipes. These allowed flow be-18

low obstacles, but were restricted to axis-aligned passages. We19

improve the method of Dagenais et al. [1] by allowing extended20

pipes with any shape, eliminating the axis-aligned limitation.21

Our goal is to simulate small amounts of liquids, with a mil-22

limeter to sub-millimeter resolution. Another feature is impor-23

tant at such scales: the meniscus, which is the effect of the cap-24

illary action at the fluid–solid boundary. Kerwin et al. [21] pro-25

pose a real-time meniscus shading method relying on a pixel-26

based edge detection. Although fast, this method delivers lim-27

ited realism, as it does not take into account the size of the28

meniscus, nor does it differentiate between a concave and a29

convex meniscus. The method of Dagenais et al. [1] greatly30

improved the meniscus shading, allowing control of the size of31

the meniscus, and included a physically-based curvature incor-32

porating the contact angle. Nevertheless, their method did not33

account for the view direction, which then often produced spu-34

rious dark areas for convex menisci. Our approach accounts for35

the view direction by correctly masking these areas.36

Prior VP methods often ignore effects that are visible at a37

smaller scale, such as the viscous drag force from the ter-38

rain and the meniscus near boundaries. Furthermore, multi-39

layered frameworks neglect the flow underneath fully-flooded40

passages below obstacles. We thus extend the VP method with41

a physically-based model for the viscous drag force, and pro-42

pose an extended pipe model that handles the flow underneath43

obstacles. Furthermore, we improve the surface to account for44

its evolving multi-layer topology and develop a new meniscus45

shading approach.46

3. Liquid simulation47

Our approach targets the real-time simulation of small48

amounts of liquid based on the VP method (Sec. 3.1). Our con-49

tribution breaks down into two categories: improving fluid be-50

havior and improving the rendering. On the behavior side, we51

first propose a new formulation for the viscosity (Sec. 3.2), al-52

lowing a varying amount of viscosity and widening the range of53

behavior from water to liquids such as blood and paint. In a fur-54

ther improvement to the behavior, we add the ability to handle55

simulation domains containing overhangs and holes, extending 56

the multi-layered VP method to account for the flow under ob- 57

stacles through extended pipes (Sec. 3.3). Our rendering im- 58

provements include optimizing the surface to prevent various 59

forms of artifacts (Sec. 4), and adjusting the surface normals to 60

account for the meniscus (Sec. 5). 61

3.1. Virtual pipes simulation 62

This section explains how we combined different VP meth- 63

ods to derive our specific VP model. Our base liquid simulation 64

follows the VP method formulation introduced by O’Brien and 65

Hodgins [19], with the multi-layer structure of Kellomäki [5]. 66

The VP method uses a 2D simulation grid divided into 2D cells. 67

In turn, each cell has one or multiple columns when we extend 68

to the multi-layered VP model. Each column corresponds to a 69

range [mini,maxi] along the vertical axis, with base height bi, 70

liquid height hi, and maximum range maxi (Fig. 2). Our ter- 71

rain data comes from a 3D signed distance field representing 72

solid objects. We choose ∆x for our simulation grid to be the 73

same size as the terrain cell size so that we capture all of the de- 74

tails from the terrain. At initialization and as needed when the 75

terrain changes, the column properties concerning the terrain 76

(mini, bi, and maxi) are set by ray casting the terrain distance 77

field upward through the center of a cell.

 

Δx

mini
bi

himaxi

fi,j fi,k
ij

k
cell

column

Fig. 2: The simulation grid is divided into cells, which in turn contain one or
more columns. Here we see three linked columns i, j, and k, and column i’s
properties: its range [mini,maxi] along the vertical axis, its base height bi, and
its liquid height hi.

78

Adjacent columns are connected using virtual pipes through
which they exchange liquid. In the multi-layer case, a pipe con-
nects two adjacent columns i and j when their liquid ranges
[bi,maxi] overlap. Note that one column can be connected to
multiple columns from the same adjacent cell. As in the work
of Mei et al. [3], pipe connections are created only for the 4-
neighborhood. These connections are created at the beginning
of the simulation and adjusted when there is a change in the ge-
ometry of the obstacles. Throughout this paper, we often use
the term terrain to refer to any obstacle (soft or rigid) lying be-
low the columns of liquid. At each simulation step, the flux fi, j
between a column i and its neighbor column j is updated us-
ing their difference in hydrostatic pressure and an explicit Euler
integration:

f t+∆t
i, j = ζ f t

i, j + ∆tA
g(ht

i − ht
j)

l
, (1)

where ζ is the friction parameter introduced by Mould and
Yang [22], ∆t is the simulation timestep, g is the gravitational
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acceleration, A is the cross-section area of the virtual pipe, and
l is the length of the virtual pipe. As in the work of Št’ava et
al. [4], we set l to be equal to the grid cell size ∆x, and A = ∆x2.
Note that damping is added in the simulation by scaling the
amount of flux from the previous timestep that is preserved us-
ing the friction parameter ζ, instead of adding a friction force
in the simulation. This approach has the advantage of being
stable for ζ ∈ [0, 1]. We want ζ to have the same effect irre-
spective of the time step. As such, we propose to set ζ = ω∆t,
where ω = [0, 1] is the fraction of flux retained per unit time.
In our examples, we set ω = 0.5. Note that fi, j = − f j,i; thus
we compute the flux once per pipe. In order to prevent the
liquid height from dropping below the base height, the outflow
fluxes are scaled as described by Mei et al. [3]. Similarly, to pre-
vent the liquid height from going above the maximum height,
we scale the inflow fluxes as explained by Kellomäki [5]. The
scaled fluxes are then used to compute the new liquid heights,
again using an explicit Euler integration:

ht+∆t
i = ht

i +
∆t

∆x2

∑
j∈neighbor(i)

f t+∆t
j,i . (2)

The main steps of our simulation loop are shown in Alg. 1.1

Lines in bold are the steps that we added to the VP method2

to handle viscosity and the flow under fully-flooded passages.

Algorithm 1: Simulation loop.

1 Update extended pipes connections (Sec. 3.3)
2 Update liquid fluxes
3 Apply viscosity (Sec. 3.2)
4 Scale liquid fluxes
5 Update liquid heights
6 Source liquid in the simulation

3

3.2. Viscosity model4

When a thin layer of liquid flows on a surface, it is slowed5

down by the shear stress forces from its interaction with the ter-6

rain. This effect is propagated further away through the liquid7

by the viscous shear forces. As the depth of the liquid layer8

increases, the impact of this interaction on the overall liquid ve-9

locity decreases, at a rate determined by its viscosity. Handling10

a wide range of liquid depths is important in many applications,11

including virtual surgery, for example. Hence, our goal is to12

handle a wide range of depths in a physically-based manner,13

which cannot be done by the current VP method.14

Our proposed viscosity model is based on the Navier-Stokes
equations, which are based on the velocity. The VP method
works with the flux fi, j instead of the velocity ui, j; These are
related as follows:

fi, j =
ui, j

C
, (3)

where C = ∆x(h − b) is the cross-sectional area of the liquid’s15

flow from one column to its neighbor. Note that ui, j is a scalar16

that represents the speed of the flow along the pipe orientation.17

For simplicity we assume that the vertical axis is z; pipes are18

thus aligned with either the x- or y- axis. Because ui, j lies be- 19

tween adjacent columns, it can be interpreted as a staggered 20

grid, where ui, j = ux or uy, depending on its orientation. 21

The VP method assumes that the liquid’s properties are con-
stant along the vertical axis. However, because viscous forces
are computed from the spatial differences of the velocity, this
assumption would result in no shear viscous forces along the
vertical axis. For that reason, we define a velocity profile that
varies vertically up

i, j(z), and interpret ui, j as the average vertical
velocity. We derive the relationship between up

i, j(z) and ui, j in
Appendix A, which leads to:

up
i, j(z) = −

3ui, j

H2

(
z2

2
− Hz

)
, (4)

where H is the liquid’s depth (hi−bi) of the column from which
the flux originates. Using this vertically varying velocity, we
derive (Appendix B) the effect of the viscosity on the average
velocity ui, j:

un+1
i, j =

(
H2

H2 + 3∆tν

)
un

i, j,

where ν is the kinematic viscosity of the liquid. Using Eq. 3,
we can convert from velocity to flux:

f n+1
i, j Cn+1 =

(
H2

H2 + 3∆tν

)
f n
i, jC

n.

By assuming that the liquid depth remains the same during the
timestep, we get Cn = Cn+1:

f n+1
i, j =

(
H2

H2 + 3∆tν

)
f n
i, j. (5)

At each step, this equation is used to enforce viscosity on the 22

fluxes computed from Eq. 1. 23

In Eq. 5, the right-hand side coefficient is guaranteed to be 24

in the [0, 1] range for 0 ≤ 3∆tν and 0 < H. This means that 25

no energy is added in the simulation, and thus it remains stable 26

even for arbitrarily small or large kinematic viscosity values. 27

Fig. 3 shows how the coefficient of Eq. 5 varies for a represen- 28

tative range of values of H and ν. The behavior can be roughly 29

characterized as follows. As the liquid depth H increases, the 30

coefficient of the right-hand side gets closer to 1, lessening the 31

impact of viscosity. Similarly, the viscosity ν damps the fluxes 32

more severely as H becomes smaller. This shows that our vis- 33

cosity model is stable and produces the intended behavior. Fur- 34

thermore, it is simple and fast to compute, making it ideal for 35

real-time purposes. 36

3.3. Multi-layer and extended pipes 37

The multi-layer VP method can only exchange liquid be- 38

tween neighbor columns. If there is a passage through or be- 39

low obstacles, then as soon as the level of one column of the 40

passage (Fig. 4 left, pin) reaches its maximum, the VP method 41

will block the flow of liquid for that column. To allow liquid 42

flow inside a passage, we identify fully-flooded passages and 43

change the connections using extended pipes to link both ends 44

of the passage (Fig. 4, right). Thus, instead of only having con- 45

nections between neighboring columns, we will also connect 46
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y

H

Fig. 3: A 3D graph showing how the viscosity coefficient y = H2

H2+3∆tν
varies

for ν ∈ [0, 0.1] and H ∈ [0, 0.005]

Passage Passage

bin bout
pin pout

bin
pin pout bout

Fig. 4: Left: The VP method prevents flow between bin and bout (it is blocked
at pin). Right: Our approach permits flow between bin and bout using an
extended pipe.

the ends of fully-flooded passages. A fully-flooded passage1

consists of a group of consecutive connected columns having2

a level of liquid equal to their maximum limit. For efficiency,3

we restrict the search for consecutive cells along two orienta-4

tions, namely, alignment with the local x- and y- axes of the5

grid. Once a fully-flooded passage is identified, we use an ex-6

tended pipe to make a connection between the columns at the7

boundary (bin and bout). The flux between these columns is8

initialized to zero. Once we have adjusted the pipe connections9

of the columns on both sides of the passage, the standard VP10

method is used with the new connections. At each timestep, ex-11

tended pipes are connected and disconnected as needed based12

on the identified fully-flooded passages. In Sec. 7, we investi-13

gated a different approach which removes the axis-aligned lim-14

itation of the extended pipes.15

4. Liquid surface16

There are several requirements for the liquid surface: real-17

time generation and rendering, support for multi-layer surfaces,18

and flexibility to use an arbitrary geometry for the obstacles’19

surface. To render the liquid surface, Borgeat et al. [20] dis-20

place the terrain using the liquid height in the nearest column,21

and adjust the vertex colors and normals. This is problematic22

as the meshes of the obstacles are unlikely to have the appropri-23

ate resolution and uniformity to correctly represent the liquid.24

Furthermore, discontinuities are introduced at overhangs where 25

the obstacle meshes of both levels are not connected to each 26

other. Fig. 5 and the accompanying video show such prob- 27

lems on the surface near fully submerged overhangs. Kel-

Fig. 5: Surface seam problems from the method of Borgeat et al. [20].

28

lomäki [5] displaces the vertices of a regular mesh grid based 29

on the height of the topmost columns, but this method assumes 30

a single continuous surface over the whole simulation domain, 31

which is not the case in multi-layer scenarios. Considering the 32

limitations of current methods, we devised a new surface cre- 33

ation approach which detects links between adjacent columns 34

(Sec. 4.1), and connects them using an optimal triangle config- 35

uration (Sec. 4.2). Furthermore, we handle boundaries of the 36

liquid to ensure a coherent surface (Sec. 4.3). Finally, we pro- 37

pose an optimization approach to prevent conflicting intersec- 38

tions between the liquid surface and the surface of the obstacles 39

(Sec. 4.4). Alg. 2 presents the steps for the preparation of the 40

surface.

Algorithm 2: Steps related to the preparation of the surface.

1 Surface links (Sec. 4.1)
2 Surface creation (Sec. 4.2)
3 Surface boundaries (Sec. 4.3)
4 Surface optimization (Sec. 4.4)

41

4.1. Multi-layered surface links 42

When handling multiple layers, the surface of the liquid gets 43

more complex: adjacent cells could have a different number of 44

columns, and parts of the obstacle geometry could exhibit over- 45

hangs. This increases the complexity of the surface creation. It 46

is thus important to derive a robust approach that can handle all 47

cases. In our approach, neighbor columns that will be linked 48

by the liquid mesh surface are identified using a multi-layered 49

link test (Fig. 6). With this test, columns are linked if their re-

 
hi

ij

mini
maxi

minj

maxj hj

Fig. 6: Neighbor columns are linked if their liquid height lies within one an-
other’s range [min,max].
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1

spective liquid heights fit between each other’s minimum and2

maximum heights. As such, we define two neighbor columns i3

and j as linked if: min j < hi < max j, and mini < h j < maxi, as4

shown in Fig. 6. In contrast to the pipe connections, the surface5

links are computed for the 8-neighborhood of each cell. They6

are computed for each pair of adjacent wet or wet–dry columns.7

A dry column is defined as a column where hi ≤ bi. This ap-8

proach works in the general case, while a few special cases oc-9

curring at the boundary are handled differently (Sec. 4.3). The10

surface links change over the course of the simulation and are11

verified at each frame (Fig. 7). In the next section, we explain

a b

c

a b

c

Fig. 7: Multi-layered linking. The thick lines show linked columns. On the left:
columns a and b are initially linked. On the right: as the liquid height of b
increases, it becomes linked with c.

12

our approach to generating the surface from the surface links.13

4.2. Surface creation14

Our work extends the idea of displacing the vertices of a reg-15

ular mesh grid to multi-layered simulations. At the beginning16

of the simulation, a 3D vertex is allocated for each column, and17

matches the 2D coordinates of its column. Then, at each frame,18

its vertical position is set to match the liquid’s height. After-19

ward, these vertices are used to create triangular faces across20

adjacent linked columns (based on the link test from Sec. 4.1).21

To that end, quartets of neighbor cells {(i, j), (i + 1, j), (i, j + 1),22

(i+1, j+1)} are iterated. For each quartet of cells, we analyze the23

links between their columns to find their corresponding triangle24

configuration, as shown in Fig. 8. First, we find the groups of

Fig. 8: Possible triangle configurations between 4 or 3 linked columns inside a
quartet. The black points correspond to column centers.

25

four mutually interlinked columns (these will form two trian-26

gles). From the remaining columns, we then identify the groups27

of three mutually interlinked columns (these will form a single28

triangle). Finally, the remaining groups of two mutually inter-29

linked columns are discarded as they do not correspond to a30

triangle. For groups of four linked neighbor columns, two tri-31

angle configurations are possible. In such cases, we pick the32

configuration for which the sum of the liquid height of the di-33

agonal endpoints is the greatest, as described by Chentanez and34

Müller [2], in order to align the diagonal edge of the triangles35

with the curvature of the surface.36

Before rendering, the normals are computed from the liquid

heights, and the vertex opacity oi is adjusted to the liquid depth:

oi = min
(

hi − bi

depthmax
, 1

)
,

where depthmax is the depth from which the liquid starts being 37

opaque. This enhances realism by better matching the opacity 38

of the simulated liquid, and it improves the look of the wet–dry 39

boundary on flat and convex surfaces. 40

4.3. Boundaries 41

In order to render a smooth liquid boundary and avoid hav- 42

ing cracks at the junction with the terrain, the surface requires 43

special treatment at the boundary of the liquid. Wet columns 44

can be linked with dry columns having a base height (and thus 45

liquid height) significantly higher than the liquid height of the 46

wet column. Blindly creating triangles to the liquid height of 47

dry columns would result in unrealistic slopes on the liquid sur- 48

face near dry columns (Fig. 9, left). The vertex height of dry

Fig. 9: Bowl filled with liquid without adjusting boundaries (left), and with
boundary adjustments (right)

49

columns is thus adjusted to the average height of their linked 50

wet neighbors, and the surface normals of dry columns are 51

adjusted in a similar fashion. With these corrected vertices 52

and normals, the surface is smoother and appears as expected 53

(Fig. 9, right). Also, during the triangle generation step, the tri- 54

angle configuration that allows the ends of the diagonal edge to 55

be both inside or both outside the boundary is prioritized. 56

In some cases, generally below overhangs, the liquid surface 57

in a wet column i might be next to a wall boundary belonging 58

to a neighbor column j to which it is not linked, i.e., min j < 59

hi < max j, but maxi < b j. This results in a crack between the 60

wet column and the wall boundary. To prevent such cracks, we 61

create an extra vertex positioned at the center of column j. This 62

new vertex is linked to column i, as well as to its wet neighbor 63

columns that are linked with column i. Its height and normal 64

are then set to the average of these linked neighbor columns. 65

The triangle generation step is triggered anew for all such new 66

boundary links. 67

4.4. Surface optimization for rendering 68

The terrain distance field we get as input can have any ori- 69

entation, which means that in most cases it is not aligned with 70

the simulation grid. Terrain vertices, resulting from applying 71

the marching-cubes algorithm on the terrain distance field, can 72

thus appear anywhere within a simulation cell, which often 73

leads to protrusions through the surface of the simulated liquid 74
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Fig. 10: A comparison without (left) and with (right) our minimum height cor-
rection of the liquid surface heights.

(Fig. 10, left). Such issues are avoided by correcting columns1

with thin layers of liquid; to prevent surface interpenetrations2

and z-fighting, any non-zero liquid height is forced to be above3

a computed minimum height (Fig. 10 right). This minimum4

height hmin
k is a combination of a global parameter to avoid z-5

fighting and a locally-computed height to avoid interpenetra-6

tions. The global parameter is set to 0.05∆x in our examples.7

By contrast, the locally-computed height is different for each8

column: it is precomputed from the terrain mesh, and adjusted9

when the terrain changes.10

The goal of the local height optimization is to compute a
minimum height for each column to ensure that all triangles of
the liquid surface will be above the terrain mesh vertices, even
when the amount of liquid in a column is very small. We iterate
through each vertex of the terrain mesh surface, identifying the
quartet of four columns surrounding the vertex, and optimizing
the local heights to make them as small as possible, under the
constraint that the triangles formed by these columns are above
the terrain vertex. We express the height of the liquid surface,
hl, along the vertical axis through a terrain vertex as the bilinear
interpolation of the heights of the related quartet. The height
of each column is the sum of the local height lk and the base
height bk. We optimize the local heights lk under the constraint
that the bilinear interpolation hl should be slightly above the
terrain vertex hv:

min
lk

∑
k

(
wkl2k

)
, subject to hv + ε = bilinear

k∈quartet
(bk + lk), (6)

where wk are weights assigned to each column, which will be11

discussed later in this section. This constrained equation is12

solved analytically using the Lagrange multipliers. As such,13

the approach is efficient as it does not require that a system of14

equations be solved for each terrain vertex. The final lk for a15

column is the maximum over the lk computed for all terrain16

vertices. Once the local heights are computed, the local mini-17

mum height hmin
k of each of the four columns can be computed18

as hmin
k = bk + lk. The accompanying video shows a visualiza-19

tion of the impact of the position of a terrain vertex on the local20

minimum heights of a quartet.21

The solution of Eq. 6 can create unnatural bumps on the
surface, generally in regions near a steep slope on the terrain,
where the differences between base heights in the quartet are
quite large. We prevented such issues by designing weights wk

based on the distance between the column base height bk and

the vertex height hv:

wk =


∆x

hv − bk
, if bk ≤ hv

1E10, otherwise
. (7)

These weights enforce a greater correction to the columns with 22

a base height at the bottom of a large slope, and limit corrections 23

to those already above the terrain vertex height. 24

Terrain vertices whose normal is facing downward are 25

skipped. Furthermore, we discard terrain vertices that create 26

a height hmin
k higher than a cell size ∆x above the highest base 27

height of the quartet. Such cases usually generate unrealistic 28

bumps near edges of large slopes. Finally, large corrections can 29

be induced by terrain vertices that are extremely close to one 30

of the four columns. To prevent such large corrections, we take 31

the global minimum into account during the calculations of the 32

local minimum height, constraining the lk to be greater than or 33

equal to the global minimum height. 34

5. Meniscus shading 35

The capillary action at the fluid–solid interface causes the 36

fluid surface to curve near the borders, which affects the sur- 37

face normals and results in specular highlights at the boundary. 38

We rely on an inexpensive correction of the normal to provide 39

the desired visual effect, similar to bump mapping (Fig. 11). 40

First, we identify the columns of liquid affected by the menis-

Fig. 11: Example of a rendering without meniscus (on the left), and with our
approach (on the right)

41

cus. This is done by computing a distance field to the boundary 42

on the surface of the liquid, within the given meniscus range. 43

For each meniscus column, we also obtain the direction to the 44

boundary, as well as an estimate of the terrain inclination at the 45

boundary. This information is needed for our last step, where 46

we tilt the normals of the meniscus columns to emulate the ex- 47

pected curvature, as depicted in Fig. 12.

α

Fig. 12: Correction of the normals on the liquid surface based on the distance
to the boundary (left: original normals, middle: expected curvature, right: cor-
rected normals)

48
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5.1. Distance and direction to boundary1

To identify the region containing the meniscus, we use the2

2D distance and direction to the Nearest Boundary Column3

(NBC), i.e., the closest column on the “dry” side of the fluid–4

solid boundary. We proceed in a flood-fill manner from the5

NBC inward to the wet columns. We start from the first ring6

of wet columns, i.e., wet columns linked to a dry column or an7

extra vertex below an overhang (Sec. 4.3). We use these links8

to initialize the NBCs and distances of the first ring. We then do9

several iterations to propagate the information from the bound-10

ary. The number of iterations is automatically set to cover the11

meniscus region based on the meniscus length and the cell size.12

During the iterations, for the current wet column, we consider13

its linked columns and use the Dead Reckoning algorithm [23],14

a variant of the Chamfer distance transform algorithm: if the15

NBC distance of the current column is greater than that of a16

linked column summed with the distance to that column, we17

update the current NBC and distance (with the Euclidean dis-18

tance to the NBC).19

We also need the direction to the NBC for each column in20

the meniscus region in order to orient the meniscus accordingly.21

To that end, we can either compute the directions to the NBCs22

and then filter to attenuate any aliasing from the discrete grid23

distance field or use the finite central difference. We choose24

the latter, as it gives a smoother approximation than the raw25

directions, while limiting the amount of computation required.26

5.2. Normal correction27

The contact angle α between a liquid and a solid is given by28

Young’s equation [24]. The normal correction angle at the con-29

tact point (i.e., the fluid–solid interface) varies with the slope30

of the terrain at that point, as illustrated in Fig. 13. We use the

αα α

Fig. 13: Contact angle α affects the surface differently based on the inclina-
tion of the solid, resulting in a concave (left) or convex (right) meniscus, or no
meniscus (middle)

31

base heights of our column and of its NBC to obtain an estimate32

of the tilt angle of the solid β. This allows us to compute the33

normal correction angle ψ = β−α at the contact point (Fig. 14).34

α
βψ

α

β

ψ

Fig. 14: From contact angle α and solid tilt angle β, we obtain the correction
angle ψ to apply to the normal at the contact point.

35

We adjust the normals of the liquid surface for all the36

columns within the meniscus region. In our examples, we use a37

meniscus length of 2.8 mm, based on the densities of water and38

air [25]. Using the distance to the NBC and the correction angle 39

at the contact point, we find the tilting angle for each affected 40

column, linearly interpolated from 0 at the maximal meniscus 41

distance to the angle ψ at the interface. Finally, we rotate the 42

normal vector accordingly, as shown in Fig. 12, using the hori- 43

zontal vector perpendicular to the NBC direction. 44

5.3. Convex meniscus 45

Altering the surface normals (and keeping the same geome- 46

try) is sufficient to emulate the presence of a concave meniscus 47

(Fig. 12), but can lead to issues for a convex meniscus. Depend- 48

ing on the view angle, some parts of the convex meniscus could 49

be hidden by the surface of the meniscus itself (Fig. 15(b), from 50

A to B). If we simply compute the normal at the contact point 51

and perform our interpolation for the normal correction, we 52

may obtain normals facing away from the viewer (Fig. 15(b)- 53

(c)). These back-facing normals result in black outlines in the 54

meniscus region (Fig. 15(a)). 55

Consider Fig. 15(b): the last normal the viewpoint sees on 56

the surface is the one at point A, while the normal at the con- 57

tact point B is occluded by the surface of the meniscus. To 58

emulate this on our geometrically flat surface, we cap the nor- 59

mal at the contact point such that it is at most orthogonal to the 60

view vector, corresponding to the normal at the silhouette of the 61

meniscus (Fig. 15(b), point A). Fig. 15(d) shows the normals in- 62

terpolated as in Sec. 5.2, but this time using the capped normal. 63

This approach results in a convincing shading effect for convex 64

menisci (Fig. 15(e)). 65

6. Results 66

We tested our approach with a wide range of scenarios to 67

show its behavior, as well as the impact of its parameters. Re- 68

sults are also available in the accompanying video. Parameter 69

values and timings can be found in Table 1. We found that dy- 70

namic viscosity values in the [1.0E−6, 1.0E−5] range provide 71

realistic results for many liquids such as water, blood, and paint. 72

As with typical fluid simulation methods with an explicit inte- 73

gration, preserving the stability of the simulation requires the 74

timestep to be adjusted according to the CFL condition. This 75

can be seen in Fig. 16: the timestep is inversely proportional to 76

the number of cells dividing the simulation domain. 77

An important contribution of our work is the viscosity model 78

for small-scale liquid simulation (Sec. 3.2). We tested our ap- 79

proach with varying viscosity values (see the video and stills 80

in Fig. 17). The images show the simulation at time t = 3.0s, 81

with ν = 0, 4.0E−6, 4.0E−5, and 4.0E−1 m2/s. As the viscosity 82

increases, the liquid flows more slowly on the inclined terrain. 83

Even with a very large viscosity (Fig. 17(d)), our approach is 84

stable. 85

We derive our viscosity model by applying some simplifi- 86

cations to the Navier-Stokes equations. One notable simplifi- 87

cation is that we neglect the contribution from neighbor cells 88

to the viscosity (Appendix B). This means that our model ig- 89

nores the effect of the viscosity related to the lateral friction 90

within the liquid. Nevertheless, our model considers the fric- 91

tion at the interface between the liquid and the terrain. While 92
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(a) Dark outline problem

A

B

(b) Surface masking (c) Interpolated normals (d) Capped normals (e) Correct shading

Fig. 15: (a) With a high contact angle (i.e., a convex meniscus), interpolating to the normal at the contact point results in a noticeable black outline. (b) For
this viewing angle, the part of the convex meniscus from A to B should be hidden. (c) When interpolating to the contact point normal, some normals are facing
away from the view point. We cap the contact point normal to the normal at the silhouette (point A), as it is the last part of the meniscus visible from the camera.
(d) Interpolating to the capped normal avoids back-facing normals. (e) The erroneous black outline is no longer visible when using the capped normals.

∆t ∆x ν Simulation Surface Rendering Total

Example Resolution (ms) (m) (m2/s) Max Avg Max Avg Max Avg Max Avg

Surgery (Fig. 1) 200 × 200 × 5 3.00 0.0005 4.0E−6 5.43 4.86 2.11 1.10 0.66 0.34 7.04 6.30
Viscosity (Fig. 17(a)) 200 × 200 × 1 3.00 0.0005 0 1.05 0.61 0.49 0.43 0.19 0.16 1.63 1.21
Viscosity (Fig. 17(b)) 200 × 200 × 1 3.00 0.0005 4.0E−6 1.03 0.62 0.52 0.46 0.21 0.16 1.63 1.22
Viscosity (Fig. 17(c)) 200 × 200 × 1 3.00 0.0005 4.0E−5 1.02 0.60 0.52 0.44 0.25 0.16 2.41 1.21
Viscosity (Fig. 17(d)) 200 × 200 × 1 3.00 0.0005 4.0E−1 0.93 0.60 0.52 0.41 0.22 0.16 2.40 1.20
Three layers (Fig. 19) 100 × 100 × 3 9.00 0.001 4.0E−6 0.68 0.32 0.85 0.37 0.89 0.17 1.53 0.86
Passages (Fig. 20) 100 × 100 × 3 9.00 0.001 4.0E−6 0.50 0.26 0.48 0.34 1.10 0.15 2.36 0.78

Table 1: Statistics for all the examples shown in this paper: resolution (N × N × Layers), timestep ∆t, cell size ∆x, and kinematic viscosity ν as well as maxi-
mum/average timings (in ms) per frame for the simulation, surface generation, and rendering

0
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50

0 50000 100000 150000 200000

ms

# cells

Fig. 16: Given the same simulation domain, the timestep resulting in a stable
simulation is inversely proportional to the number of cells

our model does not capture all the features of the complete vis-1

cosity model, we can see in our animations that the model pro-2

duces the behavior expected from a viscous fluid. To further3

demonstrate that our model captures the important effects of4

the viscosity, we compared our simulation’s behavior with that5

of a full 3D FLIP simulation [26]. Fig. 18(a)-(b) and the ac-6

companying video show results for three viscosity values. For7

matching viscosity values, our approach produces a similar be-8

havior, with a slightly less viscous look. We believe that this9

(a) ν = 0 (b) ν = 4E−6 (c) ν = 4E−5 (d) ν = 4E−1

Fig. 17: A liquid flows on an inclined terrain with varying viscosity, ν, ex-
pressed in m2 /s

difference results from the lack of contribution from neighbor 10

cells. Nonetheless, with a slight adjustment of our viscosity 11

values, our simulation can achieve an even closer match with 12

respect to the FLIP simulation, as shown in Fig 18(c) and in the 13

video. 14

We make several contributions to the optimization of the 15

liquid surface. As shown in Sec. 4, we improve the smooth- 16

ness of the boundaries, and prevent incorrect interpenetrations. 17

To demonstrate the surface construction with multiple layers, 18

we show a three-layer scenario with cavities and overhangs in 19

the accompanying video and in Fig. 19. Through simulation, 20

the surfaces of the multiple layers link the appropriate columns, 21

even with this configuration exhibiting overhangs and a hole in 22

the middle platform. We also validate extended pipes with mul- 23



10 Preprint Submitted for review / Computers & Graphics (2018)

ν = 4E−6 ν = 4E−6 ν = 2E−5

ν = 4E−5 ν = 4E−5 ν = 1E−4

ν = 4E−1 ν = 4E−1 ν = 4E−1
(a) 3D FLIP (b) Our approach (c) Adjusted ν

Fig. 18: Comparison between (a) a 3D FLIP simulation and (b) our approach
with the same viscosity values. The behavior is quite similar, and as can be
seen in (c), with slight adjustments of the viscosity, our approach can achieve a
behavior even closer to that of the FLIP simulation. All images are captured at
time t = 10 s. In this scenario, a volume of 1 cm3 of liquid flows on an inclined
surface. The 3D simulation is computed using Houdini’s state-of-the-art offline
FLIP solver with the same grid spacing as our simulation and an average of 8
particles per cell.

Fig. 19: This scenario shows how our surface linking approach correctly han-
dles multiple changes in the surface topology.

tiple scenarios. The scenario with four passages presented in1

Fig. 20 shows how, after the passages are flooded, the liquid2

transfer does not stop, and is able to fill the other parts of the3

container. We also validate our approach with a surgery sim-4

ulation scenario, including multiple overhangs and holes. In5

Fig. 1, blood originates on top of a vertebra during surgery. As6

the simulation domain is filled, our surface correctly handles7

the evolving topology of the liquid surface, and no holes or dis-8

continuities are visible.9

We compare our surface with that of Borgeat et al. [20] in10

Fig. 21 and in the video. In their technique, discontinuities in11

the geometry create seams on the surface near fully submerged12

overhangs. Furthermore, temporal artifacts can be seen in their13

video: the fluid surface suffers from popping near the boundary14

as it spreads. Our fluid surface is free of seams near the over-15

hangs, and our approach preserves a sharp liquid/dry boundary16

without temporal popping.17

We executed the tests presented in this paper on an Intel Core18

i5-6600 3.30 GHz with 16 GB of RAM and a GeForce GTX19

970. To take advantage of GPU parallelism, our approach was20

implemented using CUDA. The timings (Table 1) show that all21

Fig. 20: The liquid flows from the center and through four passages (left). When
the passages are fully flooded, the extended pipes continue the transfer of liquid
(right).

(a) Borgeat et al. [20] (b) Our approach

Fig. 21: Comparison between the surface from Borgeat et al. [20] (left), and
our surface (right).

of our examples run in real time. The most computationally ex- 22

pensive part is the simulation step, which takes around 50–80 % 23

of the total computation time in our examples. As can be seen in 24

Table 1 and in Fig. 22, the simulation times grow quadratically 25

with respect to the number of cells. All of our examples take
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Fig. 22: The average simulation time per frame (excluding rendering) is
quadratic with respect to the number of cells.

26

considerably less than the 16.6 ms needed to achieve real-time 27

rates, leaving time for other computations such as soft body 28

simulation, haptic feedback, rendering, and collision detection. 29

7. Discussion 30

We show in the accompanying video that our viscosity 31

model, surface reconstruction, and meniscus modeling are inde- 32

pendent of the underlying height map simulation; it works just 33

as well with the Shallow Water Equation (SWE) simulation [2]. 34

While the SWE method can take advantage of our contribu- 35

tions, the VP method proved to be a better choice since it had 36
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results of equivalent quality with significantly smaller compu-1

tation times.2

The simulation behavior is improved by the use of extended
pipes, which allow the liquid to flow through fully-flooded
passages. However, the extended pipes approach sometimes
introduces some ripples when these pipes get connected and
disconnected, even when using the scaling method of Mei et
al. [3]. Furthermore, the axis-aligned extended pipes described
in Sec. 3.3 block the flow of liquid for each column that does not
have an axis-aligned line-of-sight to another side of the passage.
As such, the axis-aligned extended pipes behave very poorly
in scenarios exhibiting more complex passages such as those
shown in Fig. 23. In contrast with the axis-aligned extended

Fig. 23: Examples of more complex passages that the axis-aligned extended
pipes cannot handle. The liquid flow is drastically slowed down when it should
turn from the axis-aligned direction. See the accompanying video for a com-
parison between the axis-aligned extended pipes and the unified pipe for the
cross-shaped (left) scenario.

pipes that establish multiple independent connections between
the columns facing each other on both sides of the passage, we
experimented with another approach which consists in having a
unified extended pipe connecting each and every boundary col-
umn b around a passage. We change the one-to-one pipe con-
nections with a many-to-many connection for each passage. We
identify the set bP of boundary columns connected to the pas-
sage (Fig. 24), and we adapt Eq. 1 to compute the flux update

Passageb

b

b

b

bb

b b b

Fig. 24: This figure presents the top view of a complex passage with several
branches, some of different size. Each gateway to the passage cannot establish
axis-aligned connections to each of the other gateways; multiple configura-
tions of source of liquid will result in many gateways not getting their share of
liquid. We thus use a many-to-many connection to ensure that all of the bound-
ary columns at each gateway can exchange liquid.

between each boundary column b and the passage P:

f t+∆t
b,P = ζ f t

b,P + ∆tA
g(ht

b − ht
P)

l
(8)

Using the unified extended pipe, we need an extra step to
ensure that the fluxes all around the passage sum up to zero.

If the fluxes do not sum up to zero, which happens in most
cases, we want to adjust them so that their sum is zero. This is
equivalent to subtracting the average flux to each boundary flux
around the passage:

f ∗t+∆t
b,P = f t+∆t

b,P − fP, (9)

where fP = 1
|bP |

∑
i∈bP

fi,P is the average flux. These new fluxes 3

are used in the same way with Eq. 2 to compute the new liquid 4

heights. We validated this new approach with several scenarios 5

presented in the accompanying video. 6

The surface constructed by our approach can handle the 7

evolving topology of the liquid throughout the simulation. 8

However, we do not create any geometry to close the gap near 9

edges between unlinked cells (e.g., the edge of an overhang). 10

Nonetheless, these are in areas where the liquid falls down; 11

thus, the water height is generally low, and the gap is not very 12

apparent. Another downside is that generally, the grid does not 13

exactly follow the silhouette at the edge of these overhangs, 14

which sometimes results in having a part of the geometry that 15

will never be covered by the liquid surface. Additionally, the 16

dry/wet boundary moves on a cell-by-cell basis, which can re- 17

sult in some popping. While the depth-based opacity signifi- 18

cantly reduces this issue, it is still visible in our examples. This 19

behavior can be improved by increasing the resolution of the 20

grid, or by tracking the surface as suggested by Thuerey and 21

Hess [27, Chapter 11]. 22

In our approach, we modify only the normals and not the 23

mesh. This may not trigger enough fragments to give an accept- 24

able highlight, especially when viewing the surface of the fluid 25

from the side. However, modifying the mesh would be more de- 26

manding as we would need to handle problems involving cracks 27

and interpenetrations between the surface of the meniscus and 28

the solid. 29

8. Conclusion 30

In this paper, we present an extension of the method by Da- 31

genais et al. [1] for real-time fluid simulation in small-scale sce- 32

narios. We demonstrate that the viscosity model by Dagenais et 33

al. [1] is comparable to state-of-the-art 3D offline models, and 34

that it can be used for any heightmap simulation method, such 35

as the VP or the shallow water equations. Our approach im- 36

proves the behavior of multi-layered simulations by handling 37

the flow inside passages. Moreover, it constructs a triangular 38

mesh surface that accounts for the interlinks between the multi- 39

ple layers of liquid. We also introduce a new surface optimiza- 40

tion approach that computes minimum heights of the liquid sur- 41

face in order to prevent interpenetration of the underlying ter- 42

rain surface. Finally, we improved the shading with a novel 43

real-time meniscus approach that proved to be useful for the 44

VP, but can also be used for other heightmap-based simulation 45

methods. All these contributions improve the realism of small- 46

scale simulations. Furthermore, the approach is computation- 47

ally inexpensive, which allows it to co-exist with other real-time 48

systems normally required in the context of real applications 49

such as surgery training and games. We have demonstrated that 50
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the approach works in real time for various scenarios, such as1

blood simulation for virtual surgery.2

Although we improved the surface boundaries while main-3

taining real-time performance, the former could be further im-4

proved by closing the gap near overhanging edges. In those re-5

gions, the liquid falling from one layer to another could be sim-6

ulated using particles to improve realism, such as in the work of7

Chentanez and Müller [2]. Finally, we believe the computation8

time for the meniscus shading could be improved by using a9

precomputed distance field for static solids, such as in the work10

of Morgenroth et al. [25].11
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Appendix A. Velocity profile19

In this section, we derive the vertically varying velocity
up

i, j(z). For simplicity, we assume that the base of the liquid
is at z = 0 and that the top is at z = H. The function up

i, j(z) is
thus defined inside the liquid, i.e., for 0 ≤ z ≤ H. The velocity
is derived from the incompressible Navier-Stokes equations:

∂~u
∂t

+ ~u · ∇~u − ν∇ · ∇~u = −
1
ρ
∇p + ~g, (A.1)

∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
= 0, (A.2)

where p is the pressure, ~g = (0, 0, gz) is the gravity, and
~u = (ux, uy, uz) is the velocity. To make the velocity profile a
function of only the height z inside the liquid, we show that the
Navier-Stokes momentum equation (Eq. A.1) can be simplified.
To begin, the first term can be removed by considering a steady
flow:

∂~u
∂t

= 0. (A.3)

We also assume the velocity is constant along the horizontal
plane:

∂~u
∂x

=
∂~u
∂y

= ~0, (A.4)

Using this assumption, Eq. A.2 yields:

∂uz

∂z
= 0. (A.5)

At the terrain level, we use a no-slip boundary condition, and at
the surface level, a traction-free boundary condition:

~u
∣∣∣
z=0 = ~0,

∂~u
∂z

∣∣∣∣∣∣
z=H

= ~0. (A.6)

The terrain boundary condition and Eq. A.5 tell us that uz = 0 20

everywhere, and can thus be ignored. Using this result and 21

Eq. A.4, the second term of the Navier-stokes momentum equa- 22

tion becomes zero: 23

~u · ∇~u = ux
∂~u
∂x

+ uy
∂~u
∂y

+ uz
∂~u
∂z

(A.7)

= ux(0) + uy(0) + (0)
∂~u
∂z

= ~0. (A.8)

Finally, the third term can be simplified similarly:

−ν∇ · ∇~u = −ν

(
∂2~u
∂x2 +

∂2~u
∂y2 +

∂2~u
∂z2

)
. (A.9)

Using Eq. A.4, the first two terms become zero, yielding:

−ν∇ · ∇~u = −ν
∂2~u
∂z2 . (A.10)

After these simplifications, Eq. A.1 now becomes:

−ν
∂2~u
∂z2 = −

1
ρ
∇p + ~g. (A.11)

Now that the Navier-Stokes equations have been simplified, we
can derive the horizontal velocity as a function of z. As we use
fluxes between cells, we derive the velocity along the ux and
uy axes. We will show the derivations for ux, and uy can be
obtained in the same way. From Eq. A.11, considering the x
component, we get:

ν
∂2ux

∂z2 =
1
ρ

∂p
∂x
. (A.12)

We assume the horizontal pressure variation to be constant, and
replace it by a constant w:

ν
∂2ux

∂z2 = w, (A.13)

Integrating both sides of the equality with respect to z, and also
dividing both sides by ν yields:

∂ux

∂z
=

wz + D
ν

. (A.14)

Using the surface traction-free boundary condition from
Eq. A.6 to find the value of D yields:

∂ux

∂z
=

wz − wH
ν

. (A.15)

Integrating both sides of the equality with respect to z a second
time, and rearranging the terms yields:

ux =
w
ν

(
z2

2
− Hz

)
+ E. (A.16)

Using the ground no-slip boundary condition from Eq. A.6, we
find that E = 0:

ux =
w
ν

(
z2

2
− Hz

)
. (A.17)
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To link the velocity function to the flux velocity ui, j, we find the1

expression of the pressure gradient w that will make the average2

velocity of ux inside the liquid equal to ui, j:3

ui, j =
1
H

∫ H

0

w
ν

(
z2

2
− Hz

)
dz = −

wH2

3ν
(A.18)

w = −
3νui, j

H2 (A.19)

Using that result in Eq. A.17 yields:

ux = −
3ui, j

H2

(
z2

2
− Hz

)
(A.20)

Performing the same derivation on uy yields the same result.
Knowing that a flux is always aligned with the x− or y− axis,
ux can be substituted by up

i, j(z):

up
i, j(z) = −

3ui, j

H2

(
z2

2
− Hz

)
(A.21)

Appendix B. Viscosity model4

In this section, we derive the viscosity model, using the ver-
tically varying velocity up

i, j(z) (Appendix A). Our goal is to

determine how to update the velocity, i.e., ∂ui, j

∂t , based on the
viscosity. Our model accounts for the effect of viscosity from
the terrain to the liquid surface, ignoring the effect of neighbor
cells. While this is less accurate, neglecting the relation be-
tween neighbor cells allows us to implicitly integrate each col-
umn independently, instead of having to solve a large system
of equations. We derive our viscosity model by considering
only the viscous term of the Navier-Stokes momentum equa-
tion. Here, we show the derivation for ∂ux

∂t , but the same process
can be applied to ∂uy

∂t :

∂ux

∂t
= ν

(
∂2ux

∂x2 +
∂2ux

∂y2 +
∂2ux

∂z2

)
. (B.1)

With the assumption of Eq. A.4, Eq. B.1 is simplified to:

∂ux

∂t
= ν

∂2ux

∂z2 (B.2)

Using the velocity profile defined by Eq. A.21, this equation5

becomes:6

∂ux

∂t
= ν

∂2

∂z2

[
−

3ui, j

H2

(
z2

2
− Hz

)]
= −

3νui, j

H2 (B.3)

This result is used to compute how the velocity ui, j varies over
time:

∂ui, j

∂t
=
∂

∂t

(
1
H

∫ H

0
uxdz

)
. (B.4)

Using the Leibniz integral rule, and simplifying the problem7

by assuming that the liquid depth H does not vary over time,8

yields: 9

∂ui, j

∂t
=

1
H

∫ H

0

∂ux

∂t
dz (B.5)

=
1
H

∫ H

0

(
−

3νui, j

H2

)
dz (B.6)

= −
3νui, j

H2 . (B.7)

Finally, we integrate the average velocity implicitly using the 10

backward Euler method to get the temporal update of the veloc- 11

ity, considering the viscosity: 12

un+1
i, j = un

i, j − ∆t
∂ui, j

∂t
(B.8)

= un
i, j −

3∆tν
H2 un+1

i, j . (B.9)

Rearranging the terms yields:

un+1
i, j =

(
H2

H2 + 3∆tν

)
un

i, j. (B.10)
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